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This paper is primarily concerned with acoustic radiation of instability waves as they
undergo rapid distortion, which is one of the fundamental mechanisms by which
instability modes generate sound in subsonic flows. To fix the idea, we consider the
case where the abrupt distortion is associated with scattering of a Tollmien–Schlichting
(T-S) wave by the mean flow induced by a localized surface roughness in a com-
pressible subsonic boundary layer with an O(1) free-stream Mach number. The sound
field was calculated by extending the asymptotic approach based on the triple-deck
formalism, developed previously. This approach allows us to identify and approximate
the sound source systematically by seeking the solution for the near field hydro-
dynamics as an asymptotic series in ascending powers of ε = R−1/8, where R is the
Reynolds number at the roughness site. It is found that the first four terms in the
expansion act as octupole, quadrupole, dipole and monopole, respectively, and they
make equal order-of-magnitude contributions to the acoustic far field. Some rather
delicate source cancellations are noted. As a by-product, the analysis also shows that
a localized roughness also influences the energetics of the T-S wave, and that effect
can be characterized by a transmission coefficient, defined as the ratio of the T-S
wave amplitude after the scattering to that before the scattering.

1. Introduction
The proposition that instability waves, or more broadly, the so-called large-scale

coherent structures, could be an important source of sound has attracted much atten-
tion for two reasons. (i) Associating sound generation with such clearly identifiable
and relatively well-defined physical entities would help clarify the nature of the central
concept in Lighthill’s (1952) acoustic analogy theory, the quadrupole source, which
is in fact a drastic abstraction of the flow information that may be crucial, but
not readily available. (ii) Since the instability waves or coherent structures alike can
be easily manipulated by various artificial excitations, ample opportunities for noise
reduction may arise.

The idea was first suggested by a number of investigators in the 1970s, including
Tam (1971, 1972) and Bishop, Ffowcs Williams & Smith (1971) among others, in
their efforts to understand the noise-production mechanisms in supersonic jets. A
supersonic jet can support the so-called supersonic instability modes, which propagate
supersonically relative to the sound speed in the ambient air. These modes radiate
highly directional sound in the form of Mach waves, a phenomenon that can be
explained easily in terms of the ‘wavy-wall analogy’ (Tam 1995). The fundamental
mechanism of Mach wave radiation was confirmed by the experiments (McLaughlin,
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Morrison & Troutt 1975; Troutt & McLaughlin 1982), in which the instability modes
were introduced in a controlled manner. Tam & Burton (1984a, b) formulated an
asymptotic theory to calculate the sound radiated by a linearly evolving supersonic
mode, and their theoretical prediction was found to be in quantitative agreement
with the experimental data. Wu (2005) considered Mach wave radiation by nonlinear
evolving supersonic waves or wavetrains. By taking advantage of the fact that the
time and length scales characterizing the phase and envelope of the Mach wave are
asymptotically distinct, he was able to express the solution explicitly in terms of the
amplitude of the instability mode. The resulting solution provides further analytical
insight into the structure of the radiated Mach wave beam, and extends the ‘wavy-
wall analogy’, which explains phase propagation only, to illustrate how the envelope
propagates.

In the supersonic regime, the concept of instability waves as a dominant source
of noise has been accepted, and Mach wave radiation, as a fundamental mechanism,
underpins much of our current understanding of noise generation in supersonic
turbulent jets; see the review by Tam (1995). In contrast, in the subsonic regime, the
role of instability waves in noise generation remains a topic of debate. Following the
discovery of orderly structures in subsonic jets (Crow & Champagne 1971), Crow
(1972) suggested that these structures might be related to sound emission. Extensive
measurements of both instability wave characteristics and the associated acoustic
pressure fluctuations were carried out by Moore (1977). He observed that a small
pure-tone excitation led to a marked increase in the radiated broadband noise, in
agreement with the earlier measurements of Bechert & Pfizenmaier (1975). However,
Moore found no evidence for direct sound radiation from the fundamental instability
wave and thus concluded that the enhanced sound was due to the instability waves
influencing the turbulent mixing.

The role of instability waves in sound production was subsequently studied by
Kibens (1980) and Laufer & Yen (1983) in low-Mach-number jets. Their measure-
ments showed that the strong peak in the far-field pressure coincided with the
frequencies of the subharmonics (the appearance of which is associated with repeated
vortex pairing). Laufer & Yen (1983) noted that there was no Doppler shift in
frequency, indicating that the dominant source is at fixed positions, which they
identified as the locations of vortex paring. They also found that the sound exhibits
superdirectivity and its intensity has a nonlinear (quadratic) dependence on the
velocity fluctuation within the shear layer. Since their work, it has been generally
accepted that vortex pairing is one of the primary processes responsible for the
emission of dominant low-speed jet noise (Zaman 1985). However, Bridges & Hussain
(1992) cast some doubt on such an assertion. Their measurement also yielded a
drastically different directivity, including an angle of silence (extinction) absent in
Laufer & Yen’s (1983) experiments. Sound generation by vortex pairing was studied
by Mitchell, Lele & Moin (1999) using direct numerical simulation (DNS) at low
Reynolds numbers (about 1/20 of that in experiments). Their results predict an angle
of silence, somewhat similar to Bridges & Hussain’s (1992) measurement, but the
reason for the striking disagreement mentioned above remains to be fully understood.

There are two fundamental theoretical approaches for predicting the sound gene-
rated by unsteady fluid motions. The first is Lighthill’s (1952) acoustic analogy theory
and its numerous variants (Phillips 1960; Lilley 1974; Howe 1975). This approach
arranges the Navier–Stokes equations to obtain some form of forced wave equations.
The ‘inhomogeneous’ terms are then interpreted as the (equivalent) source of sound.
Usually, the source has to be provided by a separate calculation beforehand, and once
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this is done, the problem of aeroacoustics becomes one of conventional acoustics. The
second and alternative approach, developed independently by Crow (1970), Obermeier
(1967) and others, formulates aerodynamic generation of sound as a singular
perturbation problem, involving a hydrodynamic motion in the near field and acoustic
motion in the far field. The latter is determined by matched asymptotic expansion.
This approach treats the source as an integral part of the problem, and has proved to
be particularly suitable for calculating the sound radiated by predominantly inviscid
vortex motions (e.g. Kambe 1986).

Both Lighthill’s theory and the asymptotic approach have been used to estimate the
sound emitted by instability waves. The first attempt was made by Crow (1972) for an
instability wave in a jet using acoustic analogy theory. He argued that in the vicinity
of its saturation (neutral) location, the wave experiences growth followed by decay
so that it may be represented by a modulating wave with a Gaussian envelope. We
may then propose a quadrupole source which modulates similarly. Such a model was
further explored and extended by Ffowcs Williams & Kempton (1978) by including
random frequency modulation. It is unclear whether their model viewed the relevant
source as due to the interaction of the instability wave with itself or with the back-
ground flow, since the amplitude of the source scaled with the square of the fluctuation,
yet its frequency was the same as (rather than double) that of the wave. Despite such
ambiguity and arbitrariness, a result of general validity is that the magnitude of the
radiated sound was determined by the length scale characterizing the wave envelope:
the smaller the length scale is, the stronger the sound. It is also noted that the emitted
sound is sensitive to the detailed form of the envelope. Ffowcs Williams & Kempton
also considered sound radiation by vortex pairing, which was modelled, in a rather
arbitrary fashion, by a ‘switch over’ from a sinusoidal wave to its first subharmonic.

Crighton & Huerre (1990) analysed how the directivity of the acoustic field radiated
by a wavepacket is affected by the compactness of the source. Unlike the studies of
Crow (1972) and Ffowcs Williams & Kempton (1978), they adopted a boundary-value
formulation, where the pressure is governed by a homogeneous wave equation with
the source being specified on the boundary. In addition to confirming the sensitivity
of the radiated sound to the detailed form of the envelope, as noted earlier by Ffowcs
Williams & Kempton (1978), their analysis revealed further that for the source to
be compact, the wavelength of sound has to be much larger than the so-called
‘penetration length’ of the hydrodynamics motion; the latter is usually much longer
than the length scale of the envelope. When the compactness condition is violated, the
acoustic field cannot be represented by multipoles. As a result, the directivity exhibits
an exponential dependence on the cosine of the emission angle, as opposed to the
algebraic dependence that is characteristic of sound fields of the multipolar type. The
magnitude of the sound, on the other hand, is found to be exponentially small.

While the theoretical models mentioned above have captured some relevant features
of the acoustic radiation of a modulated wavepacket or wavetrain, they are all far from
being a truthful description of the physical problem since the basic flow that supports
the instability wavepacket has been completely ignored, and as a result, the source
terms were prescribed rather arbitrarily. An important step to overcome this shortcom-
ing was taken by Tam & Morris (1980), who used a multiple-scale method to describe
the streamwise development of a linearly developing (inviscid Rayleigh) instability
wave on a spatially varying shear layer. They showed that the straightforward asymp-
totic expansion for the instability wave is not uniformly valid across the whole flow,
because the high-order terms develop a secular behaviour. An outer region accommod-
ating the acoustic motion has to be introduced to render the solution uniformly valid.
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The instability wave acts as a driving force for the acoustic fluctuation and the latter
was determined by matching. Huerre & Crighton (1983) derived an envelope equation
that properly describes the evolution of an instability wave, but they used Lighthill’s
acoustic analogy to calculate the radiated sound. The source was explicitly assumed
to be associated with the wave interacting with the mean shear (cf. Ffowcs Williams &
Kempton 1978). The resulting directivity exhibited an angle of silence that was not ob-
served in Laufer & Yen’s (1983) experiments. The linear nature of the assumed source
means that the theory was deemed unable to account for the observed scaling relation
of the sound intensity. The disagreements led Huerre & Crighton (1983) to cast some
doubt on Lighthill’s version of acoustic analogy, and to suggest that a different form
of analogy (Lilley 1974) might be required to account for the ‘flow shielding’ effect.

Rayleigh waves originate from inviscid instability. Tollmien–Schlichting (T-S) waves
represent a different type of instability which is viscous in its origin. The sound
emission by such a linear wave in a Blasius boundary layer has been studied by
Akylas & Toplosky (1985), using essentially the same asymptotic approach as Tam &
Morris (1980). Later, Haj-Hariri & Akylas (1986) considered the acoustic radiation of
nonlinear T-S wavepackets, generated by line or point disturbances on a marginally
stable asymptotic suction boundary layer. Wang, Lele & Moin (1996) investigated
the acoustic radiation during boundary-layer transition. The DNS data of spatial
transition was used to calculate the source term in Lighthill’s acoustic analogy. They
found that sound waves were mainly emitted during the breakdown of the detached
high shear layer into small-scale motions.

All the theoretical investigations mentioned above are concerned with instability
waves that are undergoing slow distortion, in the sense that the waves modulate over a
length scale much longer than their wavelengths. As has been indicated already, such
waves, in fact, produce very little sound. This is not surprising since the energy carried
by such wavepackets concentrates in the Fourier components with wavenumbers close
to that of the carrier wave. These energetic components, however, do not radiate
because their phase speeds are in the subsonic range. Only the components with
sufficiently small wavenumbers are radiating, but the energy carried by them is very
small, and indeed very often exponentially small.

Strong radiation occurs when an instability wave undergoes abrupt distortion. It is
known that the spreading rate of an artificially excited shear layer undergoes sudden
changes at the discrete locations where successive vortex pairing takes place (Ho &
Huang 1982). Thus, the fundamental and subharmonic components of a Rayleigh
instability wave will be scattered at these locations. A theoretical model for the sound
radiated by this mechanism, which obviously is quite different from that of Ffowcs
Williams & Kempton (1978), was proposed by Goldstein (1984). In the small-Mach-
number limit, Goldstein calculated the sound produced using the matched asymptotic
expansion technique.

An extreme case of rapid distortion of instability waves occurs when they interact
with a trailing edge, where the sudden change of boundary condition causes an
abrupt mean-flow variation to produce a strong scattering effect. Experiments show
that instability waves in the oncoming boundary layer are scattered to generate a
substantial amount of sound and thus constitute a dominant source of the total
airframe noise (e.g. Arbey & Bataille 1983; Nash & Lowson 1999). The mechanism,
however, cannot be described by existing trailing-edge noise theory (Howe 1976,
1978) or the ‘excess jet noise’ model (Munt 1977, Cargill 1982), simply because, in
all these models, the upstream flow field is assumed to be uniform and hence cannot
support any instability wave. We note that since both the mean-flow distortion and
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the T-S wave can be described by triple-deck theory, an asymptotic theory for the
present trailing-noise generation mechanism can be constructed by using the same
framework. Unfortunately, the resulting system would have to be solved numerically.

In the present paper, we study instead the sound generation as a T-S wave interacts
with the rapidly varying steady flow induced by a localized surface roughness. This
scenario is of some practical relevance as it may be another potential contribution to
the airframe noise. A shared feature with the trailing-edge noise problem described
above is that the T-S wave undergoes rapid distortion, in the sense that the wave
magnitude experiences a significant change over one wavelength. Therefore, a study
of this problem may lead to an insight into a fundamental mechanism by which
instability waves radiate sound, even though the discontinuity associated with the
edge may present a significant difference.

Mathematically, the present problem has the advantage that it can be described and
solved in a completely self-consistent manner by adopting the asymptotic approach
developed by Wu (2002). Unlike the acoustic analogy, this approach describes the
radiation process directly, i.e. it examines how the hydrodynamic motion evolves to
acquire the character of sound in the far field, which is the only way that leads
to systematic identification of the true acoustic sources, without the ambiguity and
arbitrariness that plague the acoustic analogy type of approach.

The rest of the paper is structured as follows. In § 2, the problem is formulated, and
the relevant scalings are specified so that both the T-S wave and the mean flow induced
by the roughness can be described by triple-deck theory. The linearized solution for the
steady flow is presented in § 2.1, while the oncoming T-S wave is specified in § 2.2. The
T-S wave interacts with the mean-flow distortion to produce a scattered field, which
is governed by inhomogeneous triple-deck systems with the forcing coming both from
the Reynolds stresses and boundary conditions. The solution can be expanded in the
ascending powers of R−1/8, and the first four terms in the expansion are obtained in
§ 3. The large-distance asymptotic behaviour of the pressure in the upper layer shows
that the first four terms in the solution contribute octupole, quadrupole, dipole and
monopole sources, respectively, to the sound generation (§ 4). The expansion in the
upper layer becomes disordered in the far field, where the motion becomes acoustic in
nature. An outer acoustic region must be considered, where the pressure is governed
by the conventional convected wave equation in a uniformly moving medium. The
relevant solution can be represented by a linear superposition of octupole, quadrupole,
dipole and monopole, with the combination coefficients being determined by matching
with the solution in the upper deck. The formula for the intensity and directivity of
the radiated sound can be given in the closed form. In § 5, we show that the instability
wave may, on interacting with the localized roughness, be energized or weakened. This
can be measured appropriately by a transmission coefficient. Results of the relevant
parametric study are presented in § 6, and a summary and some concluding remarks
are given in § 7.

2. Formulation and scalings
We consider the two-dimensional compressible boundary layer over an airfoil.

An isolated surface roughness is located at a distance l from the leading edge. A
two-dimensional T-S wave, excited by some receptivity mechanism at some location
upstream of the roughness, propagates within the boundary layer in the streamwise
direction. It decays exponentially in the transverse direction. However, as the wave
interacts with the sudden mean-flow variation induced by the roughness, it produces
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Figure 1. A sketch of the flow structure illustrating the scattering and radiation processes.

a scattered field, the far field of which decays only algebraically and in fact represents
the propagation of sound (figure 1). The aim of the present study is to calculate this
sound field.

Let U∞ denote the local inviscid slip velocity at the top of the roughness element.
The mean density, temperature, viscosity and sound speed in the free stream are
denoted by ρ∞, T∞, µ∞ and a∞, respectively. We define the Mach number M and the
Reynolds number R as

M = U∞/a∞, R = U∞l/ν∞, (2.1)

where ν∞ = µ∞/ρ∞ is the kinematic viscosity. The focus will be on the subsonic flow
with M < 1 being of O(1). The Reynolds number is taken to be asymptotically large,
R � 1.

We introduce a Cartesian coordinate system (x1, x2) with its origin at the centre of
the roughness element, where x1 and x2 are along and normal to the surface; they are
non-dimensionalized by l. The time variable t is normalized by l/U∞. The velocity
u = (u, v), density ρ and temperature τ are non-dimensionalized by U∞, ρ∞ and T∞,
respectively, while the non-dimensionalized pressure p is introduced by writing the
dimensional pressure as p∞ + ρ∞U 2

∞p with p∞ being a constant.
For simplicity, the fluid is taken to be a perfect gas with a constant ratio of specific

heats, γ . The governing equations of the flow are

∂ρ

∂t
+ ∇ · (ρ u) = 0, (2.2)

ρ
D u
Dt

= −∇p +
1

R
∇ · (2µ e) +

1

R
∇

((
µ′ − 2

3
µ

)
∇ · u

)
, (2.3)

ρ
Dτ

Dt
= (γ − 1)M2 Dp

Dt
+

1

PrR
∇ · (µ∇τ ) +

(γ − 1)M2

R
Φ, (2.4)

1 + γM2p = ρτ, (2.5)

where e and Φ represent the tensor of the strain rate and the dissipation function:

eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, Φ = 2µ e : e +

(
µ′ − 2

3
µ

)
(∇ · u)2.
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The operators such as ∇ are defined with respect to (x1, x2), and Pr is the Prandtl
number. The shear viscosity µ is assumed to obey the Chapman viscosity law,
µ = Cτ , where C is unity for the normalization adopted above (and so will not
appear hereinafter). The bulk viscosity plays no role in the order of approximation
(and is usually taken to be zero by the Stokes hypothesis).

To describe the boundary-layer flow, we introduce

(x, y) =
(
x1, R

1/2x2

)
.

The unperturbed basic flow can be written as (u, v, p, ρ, τ ) = (UB, R−1/2VB, PB,

RB, TB). We shall assume that the wall is adiabatic and the Prandtl number Pr

is unity. The temperature profile, TB(y), is then related to UB(y) via

TB = 1 + 1
2
(γ − 1)M2

(
1 − U 2

B

)
,

from which it follows the wall temperature Tw/T∞ = 1 + (γ − 1)M2/2. The state
equation and the fact that PB = PB(x) yield the relation

RBTB = 1 + γM2PB.

In general, the basic velocity profile has to be obtained numerically by solving
the steady boundary-layer equations, but there exists a compressible version of the
Falkner–Skan similarity solution for the special case of a flat plate, or if the velocity
and temperature at the outer edge of the boundary layer, Ue(x) and Te(x), satisfy
(Stewartson 1974)

U 2
e

/
Te = (1 + X)2m, (2.6)

where the variable X is related to x via the transformation

X =

∫ x (
1 + γM2PB(x)

)
T 1/2

e (x) dx.

The similarity solution then takes form

UB = (1 + X)mf ′(η) with η =

(
1 + m

(1 + X)(1−m)

)1/2 ∫ y

0

RB dy;

the function f satisfies the equation

f ′′′ + 1
2
ff ′′ + βH (1 − f ′2) = 0 (2.7)

and the boundary conditions f (0) = f ′(0) = 0, f (∞) = 0, where βH = m/(1 + m). Since
the flow physics concerned is local, occurring in the vicinity of x = 0, we can view (2.7)
as approximating a local profile with an effective Hartree parameter βH characterizing
the local pressure gradient. In this sense, the restriction of a special global slip velocity
distribution (2.6) can be lifted. This is the viewpoint that we shall take in the present
paper. Note that the non-dimensionalization based on the local slip velocity and
temperature means that PB ∼ O(x) for x � 1. In what follows, we can take X ≈ x for
the required approximation. As y → 0,

UB(y) → λ

(
Tw

T∞

)−1

y − 1
2
m

(
Tw

T∞

)−2

y2 + 1
6
(γ − 1)M2λ3

(
Tw

T∞

)−4

y3 + λ4y
4 + O(y5),

where λ is the local skin friction, which in the case of the Falkner–Skan similarity
solution is given by λ= λ0(1 + X)−(1−m)/2 with λ0 ≡ (1 + m)1/2f ′′(0) being a constant.
The (unwieldy) expression for λ4 is not required.
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Since TBRB ≈ 1, it follows that

RB →
(

Tw

T∞

)−1

+ 1
2
(γ − 1)M2λ2

(
Tw

T∞

)−4

y2 − 1
2
(γ − 1)M2λm

(
Tw

T∞

)−5

y3 + O(y4).

The total flow field consists of the steady boundary-layer flow, and a (small)
perturbation, that is

(u, v, p, ρ, τ ) =
(
UB, R−1/2VB, PB, RB, TB

)
+ (ũ, ṽ, p̃, ρ̃, τ̃ ). (2.8)

Substitution of (2.8) into (2.2)–(2.5) yields the perturbation equations, which to the
required order of approximation, can be written as

ρ̃t + UBρ̃x + RBũx + ε−4(RBṽy + RB,yṽ) = Nc, (2.9)

RB(ũt + UBũx + ε−4UB,yṽ) = −p̃x + (TBũy)y + (UB,y τ̃ )y + Nu, (2.10)

RB(ṽt + UBṽx) = −ε−4p̃y + 2(TBṽy)y + ε4(TBũy)x + Np, (2.11)

RB(τ̃t + UBτ̃x + ε−4TB,yṽ) = (γ − 1)M2(p̃t + UBp̃x) + (TBτ̃y)y + (TB,y τ̃ )y

+ 2(γ − 1)M2TBUB,yũy + Nτ , (2.12)

γM2p̃ = TBρ̃ + RBτ̃ + ρ̃τ̃ , (2.13)

where we have defined the small parameter

ε = R−1/8,

and the nonlinear terms are given by

Nc = −((ρ̃ũ)x + ε−4(ρ̃ṽ)y),

Nu = −RB(ũũx + ε−4ṽũy) + ρ̃p̃x/RB, Np = −RB(ũṽx + ε−4ṽṽy) + ε−4ρ̃p̃y/RB,

Nτ = −RB(ũτ̃x + ε−4ṽτ̃y) + (γ − 1)M2
(
(ũp̃x + ε−4ṽp̃y) − ρ̃(p̃t + UBp̃x)/RB

)
.

In (2.9)–(2.12), we have ignored (i) the momentum and thermal diffusion in the
streamwise direction, and (ii) all the terms in the dissipation function except the
leading-order one. There are also terms involving VB and the streamwise derivatives
of the mean-flow quantities (such as UB,x , TB,x etc.), which represent the non-parallel-
flow effect. They affect the last term in the expansion for the hydrodynamic motion,
but their contribution to the far field sound is negligible, and hence, for brevity, these
terms are not written out.

Equations (2.12) and (2.13) are combined to give

(ρ̃t +UBρ̃x)+ε−4RB,yṽ = RBM2(p̃t +UBp̃x)+T 2
B ρ̃yy −2(γ −1)M2UB,yũy+Nρ, (2.14)

where

Nρ = −RB(∂t + UB∂x)(ρ̃τ̃ ) − RBNτ .

Equation (2.10) can be rewritten, on replacing τ̃ using the state equation (2.13), as

RB(ũt +UBũx +ε−4UB,yṽ) = −p̃x +(TBũy)y +(UB,yTB(γM2p̃−TBρ̃ − ρ̃τ̃ ))y +Nu. (2.15)

Equations (2.9), (2.11) and (2.14)–(2.15) form the system governing the total
perturbation, (ũ, p̃, ρ̃, τ̃ ), which can be decomposed as

(ũ, p̃, ρ̃, τ̃ ) = (um, pm, ρm, τm) + (uI , pI , ρI , τI ) + (ũs, p̃s, ρ̃s, τ̃s), (2.16)

where quantities with subscripts m, I and s refer to the local mean-flow distortion,
the incident T-S wave and the scattered field, respectively.
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The T-S wave is assumed to have a wavelength comparable with the length scale
of the inhomogeneity (i.e. the local mean-flow distortion), and so it undergoes rapid
distortion during scattering. The mechanism of acoustic radiation could be readily
understood in the spectrum space. Suppose that the T-S wave has a wavenumber α.
The mean-flow distortion has a continuous Fourier spectrum, which is a continuous
function of wavenumber k. The interaction between them generates components with
wavenumbers (k − α). The majority of the components with (k − α) = O(1) are non-
radiating, since their phase speeds are subsonic. Only the long-wavelength components
with (k − α) � 1 have supersonic phase speeds relative to the sound speed in the free
stream, and they emit acoustic waves to the far field. The intensity of the emitted
sound wave is proportional to the amplitude of the Fourier component with the
wavenumber α, which is among the primary energy-containing components because
the mean-flow distortion has a length scale comparable with α−1. Strong radiation is
therefore expected.

The sound generated by scattering will be calculated by extending the systematic
asymptotic approach based on the triple-deck formalism, developed in a previous
paper (Wu 2002). This approach is natural for the problem under consideration
because the triple-deck structure governs both ingredients of the acoustic source: the
T-S wave (Smith 1979, 1989) and the mean-flow distortion (Smith 1973). The same
structure describes the scattering process. The unsteady motion induced by scattering
is of a hydrodynamic nature in the lower, main and upper decks, but it acquires
the character of sound in the far field. Therefore, an outer acoustic region has to be
introduced (figure 1), in addition to the standard three decks, which will be referred to
collectively as the hydrodynamic region. We introduce the characteristic faster spatial
and temporal variables in triple-deck theory

x̄ = R3/8Ω3x, t̄ = R2/8Ω3t, (2.17)

where Ω = (Tw/T∞)−1/2, and the renormalization factor Ω3 is inserted for convenience.

2.1. The mean-flow distortion

The surface roughness is assumed to have a height of O(R−5/8l) or smaller, and a
streamwise length scale of O(R−3/8l). The resulting mean-flow distortion is governed
by a triple-deck structure, as was shown by Smith (1973). The viscous effect is confined
in a region Y = O(1), where

Y = R1/8Ω3y.

In terms of the variable Y , the shape of the roughness is described by

Y = hFw(x̄). (2.18)

When h = O(1), the flow in the lower deck will be governed by the fully nonlinear
boundary-layer equations. In the present study, we assume that h � O(1) so that the
governing equations can be linearized and the solution can be obtained analytically

by using a Fourier transform with respect to x̄. Let F̂ (k) denote a Fourier transform
of Fw(x̄), i.e.

F̂ (k) =
1

(2π)1/2

∫ ∞

−∞
Fw(x̄) e−ikx̄ dx̄.

Since for calculating the radiated sound, it is the Fourier transform that is required,
the mean-flow solution will be presented in the Fourier spectral space.
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Consider the main part of the boundary layer first. It is convenient to use the
re-normalized variable

ỹ = Ω2y.

For ỹ = O(1), the mean-flow distortion due to the surface roughness is a small
perturbation to the base-flow profile (UB, R−1/2VB). The Fourier transform of this
mean-flow distortion expands as

um = εhΩ−1
(
U (1)

m (ỹ, k) + εU (2)
m + ε2U (3)

m + · · ·
)
,

vm = ε2h
(
V (1)

m (ỹ, k) + εV (2)
m + ε2V (3)

m + · · ·
)
,

pm = ε2h
(
P (1)

m (ỹ, k) + εP (2)
m + ε2P (3)

m + · · ·
)
,

ρm = εhΩ−1
(
R(1)

m (ỹ, k) + εR(2)
m + ε2R(3)

m + · · ·
)
.

 (2.19)

Throughout this paper, the logarithmic terms such as εn ln ε are tactically (and
conveniently) absorbed into O(εn) terms. It turns out that in order to obtain the
leading-order approximation for the radiated sound, it is necessary to consider the
solution for the mean-flow distortion up to O(ε). This is because there is a rather
delicate cancellation in the sources (i.e. Reynolds stress) associated with the leading-
order interaction between the T-S wave and mean-flow distortion, leading to reduced
acoustic efficiency. As will be shown in § 4, the leading-order interaction within the
lower deck generates the Reynolds stress of the largest magnitude, but as a result
of cancellation in the small-wavenumber limit, it acts as an acoustic octupole rather
than a quadrupole as we might expect. Similarly, in the main deck, the leading-order
interaction acts as a quadrupole. It is necessary to check whether the high-order
interactions contribute acoustic multipoles of lower order.

The leading-order perturbation satisfies the familiar equations (Stewartson 1974)

ik
(
RBU (1)

m + UBR(1)
m

)
+

(
RBV (1)

m

)
ỹ

= 0,

ikUBU (1)
m + U ′

BV (1)
m = 0,

ikUBR(1)
m + R′

BV (1)
m = 0,

 (2.20)

which have the solution

U (1)
m = A(1)

m U ′
B, V (1)

m = −ikA(1)
m UB, R(1)

m = A(1)
m R′

B, (2.21)

where A(1)
m (k) is a function of k to be determined later. The leading-order temperature

in the spectral space is obtained through the state equation as τ (1)
m = −A(1)

m R′
B/R2

B =
−R(1)

m /R2
B .

We can readily write down the governing equations for the second-order
perturbation. Omitting the details for brevity, we give only the final solution,

V (2)
m = ikUB

[
−A(2)

m + ΩP (1)
m

∫ ỹ
(

1

RBU 2
B

− M2

)
dỹ

]
,

U (2)
m = −ΩP (1)

m

RBUB

− U ′
B

[
−A(2)

m + ΩP (1)
m

∫ ỹ
(

1

RBU 2
B

− M2

)
dỹ

]
,

R(2)
m = ΩP (1)

m M2RB − R′
B

[
−A(2)

m + ΩP (1)
m

∫ ỹ
(

1

RBU 2
B

− M2

)
dỹ

]
,

P (2)
m = P̃ (2)

m − k2A(1)
m Ω

∫ ỹ

0

RBU 2
B dỹ,


(2.22)
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where A(2)
m and P̃ (2)

m are functions of k to be found. The second-order temperature is
given by

τ (2)
m = −R(2)

m /R2
B − ΩγM2P (1)

m /RB.

It is easy to show that as ỹ → ∞,

V (2)
m ∼ Ω

(
ikP (1)

m

)
(1 − M2)ỹ +

(
−ikA(2)

m + ΩikP (1)
m J∞

)
+ · · · ,

P (2)
m ∼

(
−Ωk2A(1)

m

)
ỹ +

(
P̃ (2)

m − Ωk2A(1)
m I2

)
+ · · · ,

}
(2.23)

whereas ỹ → 0,

U (2)
m ∼ (λ2/λ

2)P (1)
m ln ỹ +

(
λA(2)

m − ΩλJ0P
(1)
m + 3

2
(λ2/λ

2)P (1)
m

)
+ · · · , (2.24)

where λ2 = −Ω−1βH/(1−βH ), and J∞, J0 and I2 are defined by (A 4), (A 3) and (A 1),
respectively.

In the upper deck, the local transverse variable is

ȳ = R−1/8Ωỹ.

The steady-flow distortion is a small perturbation to the (local) uniform flow. The
Fourier transforms of its velocity, pressure and density have the expansion

(um, pm, ρm) = ε2h
{(

u(1)
m , p̄(1)

m , ρ̄(1)
m

)
+ ε

(
u(2)

m , p̄(2)
m , ρ̄(2)

m

)
+ · · ·

}
. (2.25)

The governing equations for p̄(j )
m and v̄(j )

m (j = 1, 2) are

p̄
(j )
m,ȳȳ − (1−M2)k2p̄(j )

m = 0, ikρ̄(j )
m +ikū(j )

m + v̄
(j )
m,ȳ = 0, ū(j )

m = −p̄(j )
m , ikv̄(j )

m = −p̄
(j )
m,ȳ .

It follows that (
ū(j )

m , v̄(j )
m , p̄(j )

m , ρ̄(j )
m

)
= (−1, −iκ̄/k, 1, M2)P̄ (j )

m e−κ̄ ȳ , (2.26)

where κ̄ is defined as

κ̄ = (1 − M2)1/2|k| = (1 − M2)1/2[(k + i0)(k − i0)]1/2;

here, |k| denotes an analytic continuation of the usual square root function into the
complex plane, with the branch being such that the real part of |k| is always non-
negative. The pressure and vertical velocity in the upper deck match their counterparts
in the main layer at the first two orders if

P̄ (1)
m = P (1)

m , P (1)
m = k2/κ̄A(1)

m , (2.27)

P̄ (2)
m = P̃ (2)

m − Ωk2A(1)
m I2, −ikA(2)

m + ΩikP (1)
m J∞ = −iκ̄/kP̄ (2)

m . (2.28)

In the lower deck, where Y = R1/8Ωỹ = O(1), the base-flow profile is approximated,
to leading term, by R−1/8Ω−1λY . For h � 1, the roughness-induced mean flow is a
small perturbation to this uniform shear, and its Fourier transform can be expanded
as

(um, vm) = εhΩ−1
((

Ũ (1)
m , ε2Ṽ (1)

m

)
+ ε

(
Ũ (2)

m , ε2Ṽ (2)
m

)
+ · · ·

)
,

pm = ε2h
(
P (1)

m + εP̃ (2)
m + · · ·

)
,

ρm = ε2hΩ2
(
R̃(1)

m + εR̃(2)
m + · · ·

)
.

 (2.29)

The leading- and second-order terms satisfy the linearized boundary-layer equations

ikŨ (j )
m + Ṽ

(j )
m,Y = 0,

ikλY Ũ (j )
m + λṼ (j )

m = −ikP̃ (j )
m + Ũ

(j )
m,YY − 1

2
λ2

(
Y 2ikŨ (1)

m + 2Y Ṽ (1)
m

)
δj2,

}
(2.30)
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for j = 1, 2, and δj2 is the Kronecker delta. Also here we put P̃ (1)
m = P (1)

m . The no-slip
condition at Y = hFw is approximated, after linearization, by

Ũ (1)
m (0) = −λF̂ , Ṽ (1)

m (0) = 0; Ũ (2)
m (0) = Ṽ (2)

m (0) = 0, (2.31)

while matching with the main-deck solutions (see (2.21) and (2.24)) requires that

Ũ (1)
m → λA(1)

m , Ũ (2)
m → λA(2)

m − ΩλJ0P
(1)
m + 3

2
(λ2/λ

2)P (1)
m as Y → ∞. (2.32)

After solving equations (2.30) subject to (2.31), and using the matching conditions
(2.27), (2.28) and (2.32), the leading-order solution is found to be

Ũ (1)
m = λF̂

{
1

D(k)

∫ ξ

0

Ai(ξ ) dξ − 1

}
, (2.33)

P̄ (1)
m = P (1)

m = P̃ (1)
m = −k−2(ikλ)5/3Ai′(0)F̂ /D(k), (2.34)

where Ai denotes the Airy function, ξ = (ikλ)1/3Y , and

D(k) =

∫ ∞

0

Ai(ξ ) dξ +
iλ(ikλ)2/3κ̄

k3
Ai′(0) = 1

3
− iλ(ikλ)2/3κ̄

k331/3�(1/3)
, (2.35)

The second-order solution is

Ũ (2)
m = 1

2
λ2(ikλ)

−1/3

{
1
5
[ξ 2Ai(ξ ) − 3Ai′(ξ ) + 3Ai′(0)](F̂ /D)

+ 2F̂

[
1

D

∫ ξ

0

(ξ − ξ̃ )Ai(ξ̃ ) dξ̃ − ξ +
Ai′(0)

D

∫ ξ

0

M0(ξ̃ ) dξ̃

]}
+ C(2)

m

∫ ξ

0

Ai(ξ ) dξ,

(2.36)

P̃ (2)
m = − i(ikλ)2/3Ai′(0)

kD(k)

{
Ωλ[J∞ − J0 − (1 − M2)I2]P

(1)
m

− 1
2
λ2(ikλ)

−1/3

[(
− 2

5
Ai′(0) − 9

5
Ai(0)R0

)
F̂ /D

+ 2Ai′(0)(F̂ /D)

(
χ0 − lnΩ(ikλ)1/3

/
ε + πBi′(0)R0

∫ ∞

0

Ai(ξ ) dξ

)]}
, (2.37)

with

C(2)
m =

1

D(k)

{
Ωλ[J∞ − J0 − (1 − M2)I2]P

(1)
m

− 1
2
λ2(ikλ)

−1/3

[(
− 2

5
Ai′(0) + 9

5
Ai(0)

iλ(ikλ)2/3κ̄

k3

)
F̂ /D

+2Ai′(0)F̂ /D
(

χ0 − lnΩ(ikλ)1/3
/
ε − πBi′(0)

iλ(ikλ)2/3κ̄

k

3)]}
.

Here we have put R0 = −3−2/3�(1/3), M0 = M(ξ, 0) with M(ξ, ξ0) being defined as

M(ξ, ξ0) = π

{
Bi(ξ )

∫ ξ

∞
Ai(ξ̃ ) dξ̃ − Ai(ξ )

∫ ξ

ξ0

Bi(ξ̃ ) dξ̃

}
, (2.38)

and χ0 is the Hadamard finite part integral

χ0 =

∫ ∞

0

(
M0(ξ ) +

1

ξ

)
dξ.
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From the x-momentum equations in (2.30), the vertical velocity components Ṽ (j )
m

(j = 1, 2) are obtained as

Ṽ (j )
m =

1

λ

(
Ũ

(j )
m,YY − ikY Ũ (j )

m − ikP̃ (j )
m − 1

2
λ2

(
Y 2ikŨ (1)

m + 2Y Ṽ (1)
m

)
δj2

)
. (2.39)

The solutions at the next two orders can be obtained. Though these high-order
corrections do affect the third- and fourth-order solutions of the scattered field in
the hydrodynamic region, they do not alter the far-field behaviour of these solutions
so that their contribution to the acoustic radiation is negligible. For the purpose of
calculating the leading-order acoustic field, it suffices to use the mean-flow distortion
accurate up to O(ε).

2.2. The incident T-S wave

Upstream of the roughness, where the mean flow changes slowly over the slow variable
x, the unsteady motion is the T-S wave, whose solution is described by an eigenvalue
problem. In the main deck, the solution for the T-S wave takes the form (Smith 1989)

uI = δΩ−1(u1 + εu2 + ε2u3 + · · ·)E + c.c.,

vI = δε(v1 + εv2 + ε2v3 + · · ·)E + c.c.,

pI = δε(p1 + εp2 + ε2p3 + · · ·)E + c.c.,

ρI = δΩ−1(ρ1 + ερ2 + ε2ρ3 + · · ·)E + c.c.,

 (2.40)

where for convenience, we define

E = exp{i(αx̄ − ωt̄)},

and the wavenumber α expands as

α = α1 + εα2 + ε2α3 + · · · . (2.41)

For the purpose of obtaining the leading-order solution for the acoustic field, the T-S
wave solution to O(ε) has to be considered.

At leading-order, the T-S wave has the familiar solution for its velocity and density

u1 = a1U
′
B, v1 = −iα1a1UB, ρ1 = a1R

′
B, (2.42)

where the constant a1 is a measure of the scaled amplitude of the T-S wave. The
temperature is given by τ1 = −a1R

′
B/R2

B .
The second-order solution is found to be

p2 = p2 − Ωα2
1a1

∫ ỹ

0

RBU 2
B dỹ,

v2 = iωa1 + iα1UB

[
−a2 + Ωp1

∫ ỹ
(

1

RBU 2
B

− M2

)
dỹ

]
,

u2 = −α2

α1

a1U
′
B − Ωp1

RBUB

− U ′
B

[
−a2 + Ωp1

∫ ỹ
(

1

RBU 2
B

− M2

)
dỹ

]
,

ρ2 = −α2

α1

a1R
′
B + Ωp1M

2RB − R′
B

[
−a2 + Ωp1

∫ ỹ
(

1

RBU 2
B

− M2

)
dỹ

]
,


(2.43)

while the second-order temperature τ2 is related to ρ2 via the relation

τ2 = ΩγM2p1/RB − ρ2

/
R2

B. (2.44)
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As ỹ → ∞,

v2 ∼ Ω(iα1p1)(1 − M2)ỹ + (−iα1a1 + iωa1 + Ωiα1J∞p1) + · · · ,
p2 ∼

(
−Ωα2

1a1

)
ỹ +

(
p̃2 − Ωα2

1a1I2

)
+ · · · .

}
(2.45)

On other hand, as ỹ → 0,

u2 ∼ (λ2/λ
2)p1 ln ỹ +

(
λa2 − (α2/α1)λa1 − ΩλJ0p1 + 3

2
(λ2/λ

2)p1

)
+ · · · . (2.46)

In the upper deck, the T-S wave solution expands as

(uI , pI , ρI ) = δε{(ū1, p̄1, ρ̄1, ) + ε(ū2, p̄2, ρ̄2) + · · ·}E + c.c. (2.47)

The leading terms are governed by the equations

p̄1,ȳȳ − (1 − M2)α2p̄1 = 0, iα1ρ̄1 + iα1ū1 + v̄1,ȳ = 0, ū1 = −p̄1, iα1v̄1 = −p̄1,ȳ ,

which have the solution

(ū2, v̄1, p̄1, ρ̄1) =
(
−1, −i(1 − M2)1/2, 1, M2

)
p1 e−γ1ȳ , (2.48)

where γ1 = (1 − M2)1/2α1, and the constant p1 is related to a1 via

p1 = α1/(1 − M2)1/2a1, (2.49)

which follows from matching the leading-order vertical velocities in the upper and
main decks.

The second-order terms in the expansion (2.47) are governed by the equations

p̄2,ȳȳ − (1 − M2)α2
1p̄2 = 2(1 − M2)α1α2p̄1 + 2M2ωα1p̄1,

iα1v̄2 + i(α2 − ω)v̄1 = −p̄2,ȳ ,

}
(2.50)

which have the solution

p̄2 =
{(

p̃2 − Ωα2
1a1I2

)
− (1 − M2)−1/2qp1ȳ

}
exp(−γ1ȳ),

ū2 =
{

−
(
p̃2 − Ωα2

1a1I2

)
+ (1 − M2)−1/2qȳ − (ω/α1)p1

}
exp(−γ1ȳ),

v̄2 = i(1 − M2)1/2

{
−

(
p̃2 − Ωα2

1a1I2

)
+ (1 − M2)−1/2qp1ȳ − ω/α1

1 − M2
p1

}
exp(−γ1ȳ),

where we have put q = (1 − M2)α2 + M2ω, and use has been made of the matching
condition for the pressure with the main deck. Matching the vertical velocities in the
main and upper decks yields

−i(1 − M2)1/2

{(
p̃2 − Ωα2

1a1I2

)
+

ω/α1

1 − M2
p1

}
= −iα1a2 + iωa1 + Ωiα1p1J∞. (2.51)

In the lower deck, the T-S wave solution expands as

(uI , vI ) =δΩ−1{(ũ1, ε
2ṽ1) + ε(ũ2, ε

2ṽ2) + · · ·}E + c.c.,

pI = δε{p1 + εp̃2 + · · ·}E + c.c.,

ρI = δεΩ2{ρ̃1 + ερ̃2 + · · ·}E + c.c.

 (2.52)

The leading-order T-S wave satisfies the linearized boundary-layer equations, on
eliminating the pressure from which, it can be shown that ũ1,Y satisfies{

∂2

∂Y 2
− i(α1λY − ω̂)

}
ũ1,Y = 0, (2.53)
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where ω̂ = Ωω. The solution satisfying the required no-slip condition is

ũ1 =

∫ η

η0

Ai(η) dη, (2.54)

where Ai denotes the Airy function, and

η = (iα1λ)
1/3Y + η0, η0 = −iω̂(iα1λ)

−2/3. (2.55)

The no-slip condition ũ1(0) = ṽ1(0) = 0 implies that ũ1,YY (0) = iα1p1. This and the
matching requirement with the main-deck solution give rise to

(iα1λ)
2/3Ai′(η0) = iα1p1,

∫ ∞

η0

Ai(η) dη = λa1. (2.56)

Elimination of p1 and a1 from (2.49) and (2.56) yields the dispersion relation (Smith
1989)

�(λ) ≡
∫ ∞

η0

Ai(η) dη +
iλ

α2
1

(1 − M2)
1
2 (iα1λ)

2/3Ai′(η0) = 0, (2.57)

which determines α1 for a given frequency ω.
It follows from the x-momentum equation that the leading-order transverse velocity

of the T-S wave is given by

ṽ1 =
1

λ

{
ũ

(1)
1,YY − i(α1λY − ω̂)ũ1 − iα1p1

}
. (2.58)

Expansion of the linearized boundary-layer equation to the second order shows
that ũ2 satisfies{

∂2

∂Y 2
− i(α1λY − ω̂)

}
ũ2,Y = iα2λY ũ1,YY + 1

2
λ2(iα1Y

2ũ1,Y + 2ṽ1), (2.59)

subject to the usual homogeneous boundary condition ũ2 = ṽ2 = 0; the latter is
equivalent to ũ2,YY (0) = iα1p̃2 + iα2p1. The appropriate solution for the streamwise
velocity is

ũ2 =
α2

α1

{
−η0(Ai(η) − Ai(η0)) + 1

3
(ηAi(η) − η0Ai(η0))

}
+ 1

2
(λ2/λ)(iα1λ)

−1/3

{
1
5
(η2Ai(η) − 3Ai′(η)) − 2

3
η0ηAi(η) + η2

0Ai(η)

+ 2

∫ η

η0

(η − η̃)Ai(η̃) dη̃ − 2Ai′(η0)

∫ η

η0

M(η̃, η0) dη̃ − 8
15

η0Ai′(η0) + 13
15

Ai′(η0)

}
+ q2

∫ η

η0

Ai(η̃) dη̃, (2.60)

where q2 is an arbitrary constant, and M(η, η0) is defined by (2.38). The expansion of
the x-momentum equation leads to the relation

ṽ2=λ−1
{
ũ2,YY −i(α1λY −ω̂)ũ2 −iα2λY ũ1 −iα1p̃2 −iα2p1 − 1

2
λ2(Y

2iα1ũ1+2Y ṽ1)
}
. (2.61)
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By applying the boundary condition and matching with the main-deck solution, we
have

(iα1λ)
2/3

{
2

3

α2

α1

[
Ai′(η0) − η2

0Ai(η0)
]
+ q2Ai′(η0)

}
+ Q0 = iα1p̃2 +iα2p1,

2

3

α2

α1

η0Ai(η0) + q2

∫ ∞

η0

Ai(η) dη + Q∞ = λa2 −
(

α2

α1

)
λa − ΩλJ0p1 +3

2

(
λ2

λ2

)
p1,

 (2.62)

where we have put

Q0 = 1
2
(λ2/λ)(iα1λ)

1/3

{
8
15

η3
0Ai(η0) − 17

15
η0Ai′(η0) + 9

5
Ai(η0)

+ 2πAi′(η0)Bi′(η0)

∫ ∞

η0

Ai(η) dη

}
,

Q∞ = 1
2
(λ2/λ)(iα1λ)

−1/3

{
− 8

15
η2

0Ai(η0) − 2
5
Ai′(η0)

− 2Ai′(η0)

[ ∫ ∞

η0

(
M(η, η0) +

1

η

)
dη − ln Ω(iα1λ)

1/3/(εη0)

]}
.

It follows from (2.51) and (2.62) that

α2

α1

{
2
3
η0Ai(η0) + 2

∫ ∞

η0

Ai(η) dη +
2

3

iλ(iα1λ)
2/3(1 − M2)1/2

α2
1

(
Ai′(η0) − η2

0Ai(η0)
)}

=
α1

(1 − M2)1/2

{
(2 − M2)ω

α2
1(1 − M2)1/2

+ Ω[J∞ − J0 − (1 − M2)I2]

} ∫ ∞

η0

Ai(η) dη

− Q∞ − i(1 − M2)1/2λ

α2
1

Q0, (2.63)

which determines α2, the second-order correction to the dispersion relation.

3. The unsteady flow: scattering of T-S wave
In this section, we consider the scattered field. In physical space, its solution can

be written as

(ũs, p̃s, ρ̃s, τ̃s) = (us, ps, ρs, τs) e−iωt̄ + c.c. (3.1)

The governing equations for (us, ps, ρs) are to be derived by substituting (3.1) and
(2.16) into (2.9), (2.11) and (2.14)–(2.15). The solution for (us, ps, ρs) is sought in each
deck by taking a Fourier transform with respect to x̄. The resulting flow quantities in
the spectral space will be denoted by (ûs, p̂s, ρ̂s), respectively.

It turns out that the solution for this part of the unsteady motion must be obtained
accurate up to O(ε3) even for the purpose of determining the leading-order acoustic
radiation in the far field. The reason is that two types of orderings are involved
in the solution: the asymptotic ordering characterizing the near field hydrodynamic
motion (i.e. the strength of the sources), and the multipole ordering, which reflects
the radiating nature of the respective source.† The near-field solutions at the first
four consecutive orders are such that they represent an octupole, quadrupole, dipole
and monopole, respectively. The decreasing strength of the lower-order multipoles is

† The authors would like to thank a referee for suggesting the terminology used here.
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exactly compensated by their increasing efficiency, with the consequence that they all
make equal-order of magnitude contributions to the far-field sound.

The necessity of considering both the asymptotic and multipole orderings is due
to the fundamental progress of sound radiation, namely, source cancellations. The
first and primary cancellation occurs in the spectral space, among the radiating
components, i.e. among the Fourier components with small wavenumbers. Usually,
this kind of cancellation makes the asymptotic ordering disordered in the small-
wavenumber limit. The second type of cancellation occurs in physical space, among
the sources in different transverse regions. We shall point to these cancellations at the
appropriate junctions of our analysis.

The algebra in this section is complicated, and we would like to direct the reader’s
attention to the main results, (3.61), (3.74), (3.78) and (3.80), from which the solution
for the acoustic field can be obtained (§ 4).

3.1. The main deck

In the main deck, the Fourier transform of the scattered field has the expansion

ûs = δhΩ−1(U1 + εU2 + ε2U3 + ε3U4 + · · ·),
v̂s = δhε(V1 + εV2 + ε2V3 + ε3V4 + · · ·),
p̂s = δhε(P1 + εP2 + ε2P3 + ε3P4 + · · ·),
ρ̂s = δhΩ−1(R1 + εR2 + ε2R3 + ε3R4 + · · ·).

 (3.2)

The leading-order scattered field is induced by the dominant interaction between the
T-S wave and the mean-flow distortion, which takes place in the lower deck because
both concentrate in that region. The leading terms in the main-deck expansion (3.2)
satisfy the familiar homogeneous main-deck equations, and have the solution

U1 = A1U
′
B(ỹ), V1 = −ikA1UB, R1 = A1R

′
B. (3.3)

where A1 is a function of k.
The terms U2, V2, etc. stand for the O(R−1/8) correction to the scattered field. They

satisfy the inhomogeneous equations

ik(RBU2 + UBR2) + (RBV2)ỹ = iωR1 + Ω−1S2,

RB(ikUBU2 + U ′
BV2) = iωRBU1 − ΩikP1 + Ω−1D2,

ikUBR2 + R′
BV2 = iωR1 + ΩikP1M

2RBUB + Ω−1E2,

ikΩRBUBV1 = −P2,ỹ .

 (3.4)

The forcing terms in (3.4) are given by

S2 = −
[
ik

(
u1R

(1)
m + ρ1U

(1)
m

)
+

(
v1R

(1)
m + ρ1V

(1)
m

)
ỹ

]
,

D2 = −RB

[
iku1U

(1)
m + v1U

(1)
m,ỹ + u1,ỹV

(1)
m

]
,

E2 =R2
B

[
iατ1U

(1)
m + i(k − α)u1τ

(1)
m + V (1)

m τ1,ỹ + v1τm,y

]
− ikRBUB

(
ρ1τ

(1)
m + τ1R

(1)
m

)
.

 (3.5)

They are contributed by the interaction between the T-S wave and mean-flow
distortion. We remind the reader that the latter (corresponding to the quantities
with the subscript m) are evaluated at (k − α). On eliminating R2 from (3.4), it can
be shown that

ikU2 + V ′
2 = −ikΩM2UBP1 + ε(−iα2)a1A

(1)
m

[
2UBR′2

B

/
R2

B + R′U ′
B

/
RB

]
, (3.6)

RB(UBV ′
2 − U ′

BV2) = ikP1

(
1 − M2RBU 2

B

)
− iωRBU1 + Ω−1F

(2)
D , (3.7)
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where we have put

F
(2)
D = −ika1A

(1)
m RB

(
UBU ′′

B − U ′2
B

)
+ εiα2a1A

(1)
m

(
RBUBUB ′′ − 2U 2

BR′2
B

/
RB − UBU ′

BR′
B

)
. (3.8)

The O(ε) terms in (3.6) and (3.8) arise because α expands as (2.41). These terms must
be handled carefully. They are in fact a dipole source, and it is convenient to relegate
them to the next order, where all such contributions will be considered together. Note
that the first two terms in (2.41) suffice, because the O(ε2) correction, α2, contributes
at most a dipole which is weaker by a factor ε.

Equation (3.7) is solved to give

V2 = −ikA2UB + iωA1 + ikP1ΩUB

∫ ỹ
(

1

RBU 2
B

− M2

)
dỹ − Ω−1ika1A

(1)
m U ′

B. (3.9)

while (3.4) gives

P2 = P̃ 2 − Ωk2A1

∫ y

0

RBU 2
B dỹ, (3.10)

where A2 and P̃ 2 are constants to be determined later. After inserting (3.9) into (3.6),
it is found that

U2 = A2U
′
B − ΩP1

{
1

RBUB

+ U ′
B

∫ ỹ
(

1

RBU 2
B

− M2

)
dỹ

}
+ Ω−1a1A

(1)
m U ′′

B. (3.11)

It follows that as ỹ → ∞,

V2 ∼ Ω(ikP1)(1 − M2)ỹ + (−ikA2 + iωA1 + ΩikP1J∞) + · · · ,
P2 ∼ (−Ωk2A1)ỹ + (P̃ 2 − Ωk2A1I2) + · · · ,

}
(3.12)

where J∞ and I2 are defined by (A 4), and (A 1), respectively. On the other hand, as
ỹ → 0,

U2 ∼ (λ2/λ
2)P1 ln ỹ +

(
λA2 − ΩλJ0P1 + 3

2
(λ2/λ

2)P1 + λ2a1A
(1)
m

)
.

The term λ2a1A
(1)
m represents the net contribution from the forcing term (the

quadrupole source) in the main deck. This contribution is zero for the Blasius
boundary layer, for which λ2 = 0. This observation testifies to the basic fact that the
relevant acoustic source is intrinsically dependent on the background base flow. The
influence of the latter on the sound wave cannot be fully characterized in terms of
refraction or ‘flow shielding’.

The governing equations for (U3, V3, R3, P3) are

ik(RBU3 + U2R3) + (RBV3)ỹ = iωR2 + Ω−1S3, (3.13a)

RB(ikUBU3 + U ′
BV3) = iωRBU2 − ΩikP2 + Ω−1D3, (3.13b)

ikUBR3 + R′
BV3 = iωR2 + ΩM2RB(ikP2UB − iωP1) + Ω−1E3, (3.13c)

ΩRB(−iωV1 + ikUBV2) = −P3,ỹ + G3, (3.13d)

where the forcing terms S3, D3, E3 and G3 are given by (A 6)–(A 9) in the Appendix.
Again, we eliminate R3, U3 to obtain the equation for V3:

RB(UBV ′
3 − U ′

BV3) = ikP2

(
1 − M2RBU 2

B

)
− iωRBU2 + Ω−1F

(3)
D . (3.14)

The exact expression for F
(3)
D is lengthy. Fortunately, at the present order we need

only consider the dipole source, corresponding to which P3 ∼ O(k0) for k � 1. The
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terms proportional to k (or higher powers) are omitted since they represent a source
of quadrupole (or high-order poles), whose contribution is much smaller. Then F

(3)
D

reduces to

F
(3)
D = Ωiα

(
p1A

(1)
m −a1P

(1)
m

){
(γ − 1)M2

(
U 2

BR′
B − RBUBU ′

B

)
+ R′/RB

}
+ iωa1A

(1)
m RBU ′′

B

− iα2a1A
(1)
m

{
RBUBU ′′

B − 2U 2
BR′2

B /RB − UBU ′
BR′

B

}
+ {terms ∼ k}, (3.15)

in which the terms proportional to α2 cancel out the O(ε) term in (3.8) that is
relegated to the present order. It must be pointed out that inclusion (exclusion) of
relevant (irrelevant) terms is not an ad hoc assertion; rather, it is strictly based on the
acoustic nature of the terms concerned, which can be identified by examining their
small-k behaviour.

From (3.14) and (3.13a), we have

V3 = −ikA3UB + iωA2 + Ω(ikP̃ 2)UB

∫ ỹ
(

1

RBU 2
B

− M2

)
dỹ

− Ω2(ik3)A1UB

∫ ỹ

0

(
1

RBU 2
B

− M2

) ∫ ỹ

0

RBU 2
B dỹ

+Ω(iωP1)UB

{
2

∫ ỹ 1

RBU 3
B

dỹ − 1

UB

∫ ỹ
(

1

RBU 2
B

− M2

)
dỹ

}
+ iα

(
p1A

(1)
m − a1P

(1)
m

)
UB

∫ ỹ

∞

{
(γ − 1)M2

(
R′

B

RB

− U ′
B

UB

)
+

R′
B

R2
BU 2

B

}
dỹ, (3.16)

P3 = P̃ 3 + Ω

{
2ωkA1

∫ ỹ

0

RBUB dỹ − k2A2

∫ ỹ

0

RBU 2
B dỹ

+ Ωk2P1

∫ ỹ

0

RBU 2
B

∫ y
(

1

R0U
2
B

− M2

)
dỹ

}
− a1A

(1)
m

{
1
2
(2α − k)2RBU 2

B + 1
2
k2

∫ ỹ

0

R′
BU 2

B dỹ

}
, (3.17)

where A3 and P̃ 3 are functions of k to be found. It can be shown that as ỹ → ∞,

V3 ∼ − 1
2
(1 − M2)Ω2ikA1ỹ

2 + {−Ω2ik3(1 − M2)I2A1 + Ωiω(1 + M2)P1}ỹ
+ {−ikA3 + iωA2 + {O(k2) terms}} + · · · , (3.18)

P3 ∼ 1
2
(1 − M2)Ω2k2P1ỹ

2 + Ω{2ωkA1 − k2A2 + Ωk2P1J∞}ỹ
+

{
P̃ 3 − 2α2a1A

(1)
m + {O(k2) terms}

}
+ · · · . (3.19)

Elimination of R3 in (3.13a)–(3.13c) yields

ikU3 + V ′
3 = −ΩM2ikP2UB + ΩM2iωP1

+ iαM2
(
a1P

(1)
m − p1A

(1)
m

)
{γ (U ′

B − UBR′
B/RB) + R′

BUB/RB}, (3.20)

from which it can be deduced that as ỹ → 0,

U3 ∼ 2Ω(γ − 1)M2

(
ωP1

k

)
ln ỹ + λA3 + (α/k)

(
a1P

(1)
m − p1A

(1)
m

)
λIM + {O(k) terms},

(3.21)

where IM is defined by (A 2) in the Appendix.
Finally, consider (U4, V4, P4). At this order of approximation, the relevant source

is a monopole, corresponding to which P4 ∼ O(k−1) for k � 1. We can ignore all the
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terms representing sources of dipole, quadrupole, etc., at this order. These include the
interaction between the T-S wave and mean-flow distortion at the present order, which
contributes a dipole at most. On inspecting the small-k limit of the inhomogeneous
term, and retaining only the terms contributing to a monopole, the governing equation
for V4 simply reads

UBV ′
4 − U ′

BV4 = −iωU3 + · · · . (3.22)

The relevant part of the full solution is

V4 = −ikA4UB + iωA3 − iω(α/k)
(
a1P

(1)
m − p1A

(1)
m

)
×

{
−M2 −

∫ ỹ

∞

{
(γ − 1)M2

(
R′

B

RB

− U ′
B

UB

)
+

R′
B

R2
BU 2

B

}
dỹ

+ UB

∫ ỹ

∞

{
(γ − 1)M2

(
R′

B

RBUB

− U ′
B

U 2
B

)
+

2R′
B

R2
BU 3

B

}
dỹ

}
. (3.23)

It can be shown that as ỹ → ∞,

V4 ∼ −ikA4 + iω
[
A3 + (α/k)M2

(
a1P

(1)
m − p1A

(1)
m

)]
. (3.24)

From the expansion of the continuity and energy equations, it can be deduced that
as ỹ → 0,

U4 ∼ λA4 − (ωα/k2)
(
a1P

(1)
m − p1A

(1)
m

)
λJM, (3.25)

with JM being given by (A 5).

3.2. The upper-deck solution

In the upper deck, it is convenient and informative to work with the pressure field
p̃s = (ps e−iωt̄ + c.c.). In physical space, p̃s satisfies the inhomogeneous convected
wave equation

M2

(
∂

∂t
+

∂

∂x

)2

p̃s − ∇2p̃s = Rp, (3.26)

where

Rp = ∇ · {(ũm · ∇) uI +(uI · ∇)ũm − ρm∇pI − ρI ∇pm}
+ (ũm · ∇)(∇ · uI ) + (uI · ∇)(∇ · ũm) + 2M2∇pm · ∇pI

+ 2γ (∇ · ũm)(∇ · uI ) + γM2(pm∇2pI + pI ∇2pm); (3.27)

here the subscripts I and m signify the flow quantities associated with the incident T-S
wave and the mean-flow distortion, respectively. The velocity field of the scattered
field, ũs = (us e−iωt̄ + c.c.), is related to the pressure gradient via the momentum
equations (

∂

∂t
+

∂

∂x

)
ũs = −∇ps + Rv, (3.28)

where

Rv = −(ũm · ∇) uI −(uI · ∇)ũm + ρm∇pI + ρI ∇pm. (3.29)

In the upper deck, it suffices to consider ps and vs only, whose Fourier transforms,
(v̂s , p̂s), can be written as

(v̂s , p̂s) = δhε{(v̂1, p̂1) + ε(v̂2, p̂2) + ε2(v̂3, p̂3) + ε3(v̂4, p̂4) + · · ·}. (3.30)
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The governing equations for p̂1 and v̂1 are{
∂2

∂ȳ2
− (1 − M2)k2

}
p̂1 = 0, ikv̂1 = −p̂1,ȳ . (3.31)

The solutions are

p̂1 = P1 e−κ̄ ȳ , v̂1 =
κ̄

ik
P1 e−κ̄ ȳ . (3.32)

where κ̄ = (1 − M2)1/2|k|. Matching v̄1 with the main-deck solution (3.3) gives

P1 = k2/κ̄A1. (3.33)

The governing equations for p̂2 and v̂2 in (3.30) are{
∂2

∂ȳ2
− (1 − M2)k2

}
p̂2 = 2M2ωkp̂1, ikv̂2 − iωv̂1 = −p̂2,ȳ . (3.34)

We find that

p̂2 = P̄ 2 e−κ̄ ȳ −M2ωk

κ̄
P1ȳ e−κ̄ ȳ , (3.35)

where P̄ 2 is an arbitrary function of k. Substituting p̂2 into the equation for v̂2, we
find that as ȳ → 0,

v̂2 → κ̄

ik
P̄ 2 − iω

κ̄
P1. (3.36)

The matching requirement for the pressure and vertical velocity with their main-deck
counterparts leads to

P̄ 2 = P̃ 2 − Ωk2A1I2,
κ̄

ik
P̄ 2 − iω

κ̄
P1 = −ikA2 + iωA1 + Ω(ikP1)J∞. (3.37)

The functions p̂3 and v̂3 satisfy{
∂2

∂ȳ2
− (1 − M2)k2

}
p̂3 = 2M2ωkp̂2 − M2ω2p̂1 + R3,p exp(−κ̄p ȳ),

ikv̂3 − iωv̂2 = −p̂3,ȳ + R3,v exp(−κ̄p ȳ),

 (3.38)

where we have put κ̄p = (1 − M2)1/2(α1 + µ) with µ = |k − α|. R3,p and R3,v are the
forcing due to the T-S wave interacting with the mean-flow distortion in the upper
deck,

R3,p = −
{

(1 − M2)2[α1 + µ(k − α)]2
(

1 − µ

k − α

)
+ ε(1 − M2)(α1 + µ)α2

− (1 − M2)

(
1 − µ

k − α

)
k2 − γM4k2 − M2

[
1 − (1 − M2)µ

k − α

]
k2

− ε(1 − M2)

[
2γM2k +

(
1 − µ

k − α

)
α +

2M2µk

k − α

]
α2

}
p1P

(1)
m , (3.39)

R3,v =

{
(1 − M2)3/2[α1 + µ(k − α)]

(
1 − µ

k − α

)
+ ε(1 − M2)1/2α2

}
p1P

(1)
m . (3.40)

In the above expressions, the O(ε) terms proportional to α2 correspond to a
monopole source, and they are relegated to the next order. The solution for p̂3 is found
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to be

p̂3 = P̄ 3 exp(−κ̄ ȳ) +
M4ω2

2(1 − M2)
P1ȳ

2 exp(−κ̄ ȳ)

+

{
M2ω2P1

2(1 − M2)κ̄
− M2ωkP̄ 2

κ̄

}
ȳ exp(−κ̄ ȳ) + F3,p exp(−κ̄pȳ), (3.41)

where

F3,p = (1 − M2)
(α1 + µ)2

k2 − (α1 + µ)2

(
1 − µ

k − α

)
p1P

(1)
m . (3.42)

It follows from (3.38) that as ȳ → 0,

v̄3 → κ̄

ik
P̄ 3 − iω

κ̄
P̄ 2 − iω2P1

κ̄k

[
1 − M2

2(1 − M2)

]
+ F3,v, (3.43)

where

F3,v = −(1 − M2)3/2 ik(α1 + µ)

k2 − (α1 + µ)2

(
1 − µ

k − α

)
p1P

(1)
m .

Matching the pressure p̂3 and the vertical velocity v̂3 with their respective counterparts
in the main deck yields

P̄ 3 + F3,p = P̃ 3 − 2α2a1A
(1)
m , (3.44a)

κ̄

ik
P̄ 3 − iω

κ̄
P̄ 2 − iω2P1

κ̄k

[
1 − M2

2(1 − M2)

]
+ F3,v = −ikA3 + iωA2. (3.44b)

Here, we neglected terms of O(k) or smaller. Since F3,v ∼ k, its contribution is a
quadrupole and will be ignored hereinafter. In (3.44a), F3,p and −2α2a1A

(1)
m represent

the dipole contributions from the upper and main decks, respectively. Interestingly,
they cancel each other. This represents a source cancellation in physical space. It
suggests that the acoustic field depends on the source over a rather extensive region;
merely prescribing sources within the boundary layer would not guarantee a correct
prediction of the radiated sound.

The functions p̂4 and v̂4 satisfy{
∂2

∂ȳ2
− (1 − M2)k2

}
p̂4 = 2M2ωkp̂3 − M2ω2p̂2 + R4,p exp(−κ̄p ȳ),

ikv̂4 − iωv̂3 = −p̂4,ȳ + R4,v exp(−κ̄p ȳ),

 (3.45)

where R4,p and R4,v are given in the Appendix by (A 10) and (A 11), respectively.
In these expressions, the terms proportional to k2 and k represent quadrupole and
dipole sources, and they are therefore negligible compared with the monopole source
that we are seeking. With these terms being discarded, but taking into account the
terms relegated from the previous order (i.e. the terms proportional to α2 in (3.39)
and (3.40)), it is found that

p̂4 = P̄ 4 exp(−κ̄ ȳ) − 1

6

M6ω3kP1

(1 − M2)κ̄
ȳ3 exp(−κ̄ ȳ) +

1

2

M4ω2

1 − M2

(
P̄ 2 − ωP1

(1 − M2)k

)
ȳ2

× exp(−κ̄ ȳ) +

{
− M4ω3P1

2(1−M2)2kκ̄
+

M2ω2P̄ 2

2(1−M2)κ̄
− M2ωkP̄ 3

κ̄

}
ȳ exp(−κ̄ ȳ)

+ (Gpȳ +F4,p) exp(−κ̄p ȳ), (3.46)
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where

Gp = (1 − M2)1/2 (α1 + µ)q

k2 − (α1 + µ)2
(k − 2α)

[
1 − µ

k − α

]
p1P

(1)
m ,

F4,p =
1

k2−(α1+µ)2

{
(α1+µ)[q−(k−2α)ω/α1]−

k2+(α1+µ)2

k2−(α1+µ)2
q(k−2α)

}[
1− µ

k − α

]
p1P

(1)
m .

By inserting p̂4 into the momentum equation in (3.45), we can find the asymptote of
v̂4 as ȳ → 0. Matching it with the main-deck solution gives

κ̄

ik
P̄ 4 − iω

κ̄
P̄ 3 − iω2P̄ 2

κ̄k

[
1 − M2

2(1 − M2)

]
− iω3P1

κ̄k2

[
1 − M2(1 − 2M2)

2(1 − M2)2

]
+ F4,v

= −ikA4 + iωA3 + · · · , (3.47)

while matching of the pressure leads to

P̄ 4 + F4,p = P̃ 4 + · · · , (3.48)

where

F4,v =
i(1 − M2)1/2

k2 − (α1 + µ)2

{
2q(α1 + µ)(k − 2α)

k2 − (α1 + µ)2
− [q − (k − 2α)ω/α1]

}[
1 − µ

k − α

]
kp1P

(1)
m .

The contribution of the interaction between the T-S wave and mean-flow distortion
in the upper deck is represented by F4,p and F4,v . It is noted that F4,p ∼ O(k0) for
k � 1, and through the vertical momentum equation in (3.45), we may expect that
F4,v ∼ O(k−1). However, our calculation shows that F4,v ∼ O(k) owing to cancellation
in the small -k limit between the two terms on the right-hand-side of (3.45). As a
result, the contribution from the direct interaction in the upper deck at this order
turns out to be negligible.

3.3. The lower-deck solution

In the lower deck, the Fourier transform of (us, vs, ps, ρs) has the expansion

ûs = δhΩ−1(Ũ 1 + εŨ 2 + ε2Ũ 3 + ε3Ũ 4 + · · ·},

v̂s = δhε2Ω−1(Ṽ 1 + εṼ 2 + ε2Ṽ 3 + ε3Ũ 4 + · · ·),

p̂s = δhε(P1 + εP̃ 2 + ε2P̃ 3 + ε3P̃ 4 + · · ·),

ρ̂s = δhεΩ2(R̃1 + εR̃2 + ε2R̃3 + ε3R̃4 + · · ·).


(3.49)

The leading-order terms satisfy the linearized boundary-layer equations

ikŨ 1 + Ṽ 1,Y = 0, (3.50)

i(kλY − ω̂)Ũ 1 + λṼ 1 = −ikP1 + Ũ 1,YY + N1, (3.51)

where we put

N1 = −ikũ1Ũ
(1)
m − Ṽ (1)

m ũ1,Y − ṽ1Ũ
(1)
m,Y . (3.52)

Recall that the mean-flow quantities (i.e. those with the subscript m) are evaluated at
(k − α). The system (3.50)–(3.51) is subject to the matching condition with the main
deck:

Ũ 1 → λA1 as Y → ∞. (3.53)
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The no-slip condition for the unsteady flow on Y = hFw(x̄) leads, after linearization

for small h, to Ũ 1 = − ũ1,Y (0)F̂ and Ṽ 1 = 0 at Y = 0, which in turn imply that

Ũ 1 = −ũ1,Y (0)F̂ , Ũ 1,YY (0) = iω̂ũ1,Y (0)F̂ + ikP1 (3.54)

after setting Y = 0 in (3.51) and using the fact that N1 = 0 at Y =0.
By eliminating the pressure from (3.50)–(3.51), it can be shown that Ũ 1 satisfies

LŨ 1,Y ≡
{

∂2

∂Y 2
− i(kλY − ω̂)

}
Ũ 1,Y = (ikλ)H1, (3.55)

where H1 ≡ −(ikλ)−1N1,Y or more explicitly

H1 =
1

λ
(ikλ)−1

{
i(k − α1)λũ1Ũ

(1)
m,Y + iαλũ1,Y Ũ (1)

m

+ ũ1,YY

[
Ũ

(1)
m,YY − i(k − α)λY Ũ (1)

m − i(k − α)P (1)
m

]
+ Ũ

(1)
m,YY

[
ũ1,YY − i(α1λY − ω̂)ũ1 − iα1p1

]}
. (3.56)

Note that H1 decays exponentially as Y → ∞. The solution to (3.55) can be expressed
as (cf. Goldstein 1985)

Ũ 1 = −ũ1,Y (0)F̂ +

∫ ζ

ζ0

M̃1(ζ, ζ0) dζ + C1(k)

∫ ζ

ζ0

Ai(ζ ) dζ, (3.57)

where

M̃1(ζ, ζ0) = π

{
Bi(ζ )

∫ ζ

∞
Ai(ζ̃ )H1(Ỹ ) dζ̃ − Ai(ζ )

∫ ζ

ζ0

Bi(ζ̃ )H1(Ỹ ) dζ̃

}
, (3.58)

with Ai and Bi denoting the Airy functions, and

ζ = (ikλ)1/3Y + ζ0, ζ0 = −iω̂(ikλ)−2/3. (3.59)

Application of the matching and boundary conditions, (3.53) and (3.54), gives

−ũ1,Y (0)F̂ +

∫ ∞

ζ0

M̃1(ζ, ζ0) dζ + C1(k)

∫ ∞

ζ0

Ai(ζ ) dζ = λA1,

(ikλ)2/3

{
πBi′(ζ0)

∫ ζ0

∞
Ai(ζ )H1(Y ) dζ + C1(k)Ai′(ζ0)

}
= iω̂ũ1,Y (0)F̂ + ikP1.

 (3.60)

Eliminating A1 and C1(k) from (3.33) and (3.60), we obtain

P1 = − i(ikλ)2/3Ai′(ζ0)

k�(k; ω̂)

{
ũ1,Y (0)F̂ (1 + ζ0R(ζ0)) +

∫ ∞

ζ0

K(ζ, ζ0)H1(Y ) dζ

}
, (3.61)

where

�(k; ω̂) =

∫ ∞

ζ0

Ai(ζ ) dζ + iλ(ikλ)2/3Ai′(ζ0)
κ̄

k3
, (3.62)

K(ζ, ζ0) = π
Ai′(ζ0)Gi(ζ ) − Gi′(ζ0)Ai(ζ )

Ai′(ζ0)
, (3.63)

R(ζ0) =

∫ ∞

ζ0

Ai(ζ ) dζ/Ai′(ζ0), (3.64)

with functions Gi and Gi′ being defined in Abramowitz & Stegun (1964, p. 449).
The exponential decay of H1 ensures convergence of the integral in (3.61). As will be
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shown in § 4, P1 has the asymptote P1 = (k2) for k � 1, implying that P1 corresponds
to an octupole source for sound generation. It consists of two parts: a surface source
and volumetric source. That P1 acts an octupole, as opposed to a quadrupole source,
is a consequence of the first kind of source cancellation, namely cancellation in the
small-k limit.

It is also found that as k → 0,

Ũ 1,Y =− exp(iπ/4)ω̂−1/2

{[
iω̂ũ1,Y (0)F̂ − 1

2

∫ ∞

0

exp
(
−(−iω̂)1/2Y

)
N1,Y dY

]
exp

(
−(−iω̂)1/2Y

)
+ 1

2

[∫ Y

∞
exp

(
−(−iω̂)1/2(Ỹ −Y )

)
N1,Ỹ dỸ−

∫ Y

0

exp
(
−(−iω̂)1/2(Y−Ỹ )

)
N1,Ỹ dỸ

]}
+O(k).

(3.65)

This indicates that Ũ 1,Y and hence Ũ 1 are of O(k0) for k � 1 with Y = O(1), a
result that will be used to decide the radiating nature of certain forcing terms in the
subsequent analysis.

Consider now the terms (Ũ 2, Ṽ 2, P̃ 2) in the expansion (3.49). They are governed
by

ikŨ 2 + Ṽ 2,Y = 0,

−LŨ 2 + λṼ 2 = −ikP̃ 2 − 1
2
λ2(Y

2ikŨ 1 + 2Y Ṽ 1) + N2,

}
(3.66)

where

N2 = −
{
ikũ1Ũ

(2)
m + Ṽ (2)

m ũ1,Y + ṽ1Ũ
(2)
m,Y + ikũ2Ũ

(1)
m + Ṽ (1)

m ũ2,Y + ṽ2Ũ
(1)
m,Y

}
. (3.67)

Equations in (3.66) can be combined to give

LŨ 2,Y = −N2,Y + 1
2
λ2(Y

2ikŨ 1,Y + 2Ṽ 1). (3.68)

As at the leading order, the boundary conditions to be satisfied are

Ũ 2 = −ũ2,Y (0)F̂ , U2,YY = iω̂ũ2,Y (0)F̂ + ikP̃ 2 at Y = 0. (3.69a, b)

The right-hand side of (3.68) is proportional to O(k0) as k → 0. Such a source term
in the generic case is expected to be a quadrupole. For the present problem, detailed
calculation (below, and in § 4) shows this quadrupole contribution from the lower
deck turns out to be zero.

Noting that the right-hand side of (3.68) does not decay as Y → ∞, we write

Ũ 2 = (λ2/λ)

{ ∫ Y

0

Ũ 1(Y ) dY − λ−1P1

∫ ζ

ζ0

M(ζ, ζ0) dζ

}
+ Π, (3.70)

with M(ζ, ζ0) being defined by (2.38). Then, Π satisfies

L ΠY = −N2,Y + 1
2
(λ2/λ)(2N1 + ikλY 2Ũ 1,Y ) ≡ (ikλ)H2.

On noting that Ũ
(2)
M ∼ λ2A

(1)
m Y and ũ

(2)
1 ∼ λ2a1Y , the non-decaying part in N2,Y cancels

that of N1 exactly, so that H2 decays as Y −1. The solution satisfying (3.69a) can be
written as

Π = −ũ2,Y (0)F̂ +

∫ ζ

ζ0

M̃2(ζ, ζ0) dζ + C2(k)

∫ ζ

ζ0

Ai(ζ ) dζ, (3.71)

where C2(k) is a function of k to be found, and M̃2 has the same expression as M̃1

(see (3.58)) except that H1 is replaced by H2. On applying the second condition in
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(3.69a, b), and matching Ũ 2 with its counterpart in the main deck, we obtain

(ikλ)2/3

{
πBi′(ζ0)

∫ ζ0

∞
Ai(ζ )H2(Y ) dζ + C2(k)Ai′(ζ0)

}
+Λ0 = ikP̃ 2,∫ ∞

ζ0

M̃2(ζ ) dζ + C2

∫ ∞

ζ0

Ai(ζ ) dζ + Λ∞ = −ΩP1λJ0+λA2 + λ2a1A
(1)
m + 3

2
(λ2/λ

2)P1,


(3.72)

where

Λ0 = −iω̂ũ2,Y (0)F̂ + (λ2/λ)

{
Ũ 1,Y (0) − π(ikλ)2/3λ−1P1Bi′(ζ0)

∫ ζ0

∞
Ai(ζ ) dζ

}
,

Λ∞ = −ũ2,Y (0)F̂ − (λ2/λ)

{
(ikλ)−1

(
iω̂λA1 − ikP1 − ikλ2a1A

(1)
m

)
+ λ−1P1

[ ∫ ∞

ζ0

(
M(ζ, ζ0) +

1

ζ

)
dζ − lnΩ(ikλ)1/3/(εζ0)

]}
. (3.73)

After eliminating A2 and P̃ 2 from (3.37) and (3.72), we find that

P̄ 2 =
−i(ikλ)2/3Ai′(ζ0)

k�(k)

{
ω(2 − M2)λ

(1 − M2)1/2|k|kP1 + Ω[J∞ − J0 − (1 − M2)I2]λP1

+λ2a1A
(1)
m −

(
Λ∞ − (ikλ)−2/3Λ0R(ζ0)

)
+

∫ ∞

ζ0

K(ζ, ζ0)H2(Y ) dζ

}
− Ωk2I2A1.

(3.74)

The contribution of P̄ 2 to the acoustic radiation will be comparable to that of P1

because P̄ 2 acts as a quadrupole source. Note that Ũ 2,Y and Ũ 2 are of O(1) for k � 1
and Y = O(1), as is indicated by the governing equation (3.68) and the solution (3.70).

The terms (Ũ 3, Ṽ 3, P̃ 3) and R1 in (3.49) are governed by the equations

ikŨ 3 + Ṽ 3,Y = −Ω3Y Ṽ 1 + (iω̂ − ikλY )R̃1 + S̃3,

−LŨ 3 + λṼ 3 = −ikP̃ 3 + 1
2
Ω3(Y

2(ikP1) − 2Y 2Ũ 1,YY − 2Y Ũ 1,Y )

−Ω3

(
1
6
λY 3ikŨ 1 + 1

2
λY 2Ṽ 1

)
− 1

2
λ2(Y

2ikŨ 2 + 2Y Ṽ 2)

−λR̃1,Y + N3 +
(
i(k − α)ρ̃1P

(1)
m + iαR(1)

m p1

)
,

LR̃1 = Ω3λ
−1(λY Ṽ 1 + 2Ũ 1,Y ) + M2(iω̂ − ikλY )P1 + Ẽ3,


(3.75)

where Ω3 = (γ − 1)M2λ2, N3 has the same expression as N2 provided that the sub-
and super-scripts ‘2’ are replaced by ‘3’ on the right-hand side of (3.67), and

S̃3 = −ik
(
ρ1Ũ

(1)
m + ũ1R̃

(1)
m

)
−

(
ρ1Ṽ

(1)
m + ṽ1R̃

(1)
m

)
Y
,

Ẽ3 = i(k −α)ũ1τ̃
(1)
m + ṽ1τ̃

(1)
m,Y +iατ̃1Ũ

(1)
m + Ṽ (1)

m τ̃1,Y − (γ −1)M2
(
i(k −α)ũ1P

(1)
m +iαŨ (1)

m p1

)
.

After eliminating P̃ 3 from (3.75), we find

LŨ 3,Y = Ω3

{
Y (−ikP1 + λṼ 1) + Y 2Ũ 1,YYY + 3Y Ũ 1,YY + 3Ũ 1,Y + 1

6
Y 3(ikλ)Ũ 1,Y

}
+ M2λ(iω̂ − ikλY )P1 + 1

2
λ2(Y

2ikŨ 2,Y + 2Ṽ 2)

− N3,Y + λ(S̃3 − Ẽ3) −
(
i(k − α)ρ̃1,Y P (1)

m + iαR̃
(1)
m,Y p1

)
. (3.76)

As at the previous order, the forcing term is at most of O(k0) for k � 1, and so the
contribution from the lower deck is at most a quadrupole, but this is now negligible
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compared with the dipole source that must be considered at the present order. Though
the full solution for Ũ 3 can be obtained using a similar procedure to that for Ũ 2, it
suffices to write down only the homogeneous part of the solution:

Ũ 3 = C3(k)

∫ ζ

ζ0

Ai(ζ ) dζ + · · · ,

where C3 is to be determined by matching with the main-deck solution and applying
the boundary condition, which yields

C3(k)

∫ ∞

ζ0

Ai(ζ ) dζ = (α/k)
(
a1P

(1)
m − p1A

(1)
m

)
λIM + λA3 + · · · ,

(ikλ)2/3C3(k)Ai′(ζ0) = ikP̃ 3 + · · · .

 (3.77)

The solution for P̄ 3 can be found from (3.44a) and (3.77),

P̄ 3=
(ikλ)2/3λAi′(ζ0)

k2�(k)

{
−iωP̄2

κ̄
− iω2P1

κ̄k

[
1− M2

2(1−M2)

]
−iωA2 −iα

(
a1P

(1)
m −p1A

(1)
m

)
λIM

}
.

(3.78)

Finally, we consider (Ũ 4, Ṽ 4, P̃ 4), which are governed by an inhomogeneous system
analogous to (3.75), in which the forcing terms are of O(k0) at most for small k. Such
a quadrupole contribution is negligible compared with the monopole source, so that
only the complementary part of the solution is required. It follows from matching
with the main-deck solution and the boundary condition that

C4(k)

∫ ∞

ζ0

Ai(ζ ) = λA4 − (ωα/k2)
(
a1P

(1)
m − p1A

(1)
m

)
λJM,

(ikλ)2/3C4(k)Ai′(ζ0) = ikP̃ 4 + · · · .

 (3.79)

From (3.47)–(3.48) and (3.79), it is found that

P̄ 4 =
(ikλ)2/3λAi′(ζ0)

k2�(k)

{
− iω

κ̄
P̄ 3 − iω2P̄ 2

κ̄k

(
1 − M2

2(1 − M2)

)
− iω3P1

κ̄k2

[
1 − M2(1 − 2M2)

2(1 − M2)2

]
− iωA3 + F4,v − κ̄

ik
F4,p + i(ωα/k)

(
a1P

(1)
m − p1A

(1)
m

)
λJM

}
. (3.80)

4. Acoustic radiation
4.1. The asymptotic behaviour of the pressure

The solution for the pressure fluctuation of the scattered field in the upper deck can
be written as

ps = δhε
(
p(1)

s + εp(2)
s + ε2p(3)

s + ε3p(4)
s + · · ·

)
, (4.1)

where p(j )
s (j = 1, 2, 3, 4) are the Fourier inversions of p̂j given by (3.32), (3.35),

(3.41) and (3.46). For instance,

p(1)
s =

1

(2π)1/2

∫ ∞

−∞
P1(k) exp

(
ikx̄ − (1 − M2)1/2|k|ȳ

)
dk. (4.2)

In order to calculate the acoustic radiation, it is necessary to know the asymptotic
behaviour of ps as x̄, ȳ → ∞. Since the phase of the integrand has no stationary
point, the contribution to the integral comes from the region near k = 0. Note that as
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k → 0, ζ0 → ∞. It can be shown that∫ ∞

ζ0

Ai(ζ ) dζ/Ai′(ζ0) ∼ − 1

ζ0

(
1 − ζ

−3/2
0 + O(ζ −3

0 )
)
, (4.3)

K(ζ̃ + ζ0, ζ0) ∼ 1

ζ0

(
1 − ζ

−3/2
0 exp

(
−ζ

1/2
0 ζ̃

)
− ζ̃ /ζ0 + O

(
ζ −3
0

))
, (4.4)

for ζ̃ = O(ζ −1/2
0 ). Using these results in (3.61) shows that as k → 0,

P1 ∼ P0k|k|, (4.5)

which implies that p(1)
s corresponds to an octupole with strength P0,

P0 = − exp(3πi/4)

ω̂5/2(1 − M2)1/2

{
iω̂ũ1,Y (0)F̂ + ω̂3/2 exp(−3πi/4)

(
− λa1A

(1)
m

)
− iω̂1/2 exp(−3πi/4)

∫ ∞

0

YN1,Y dY −
∫ ∞

0

exp
(
−(−iω̂)1/2Y

)
N1,Y dY

}
. (4.6)

The formula (4.6) indicates that viscosity determines the strength of the octupole
source.

Similarly, it follows from (3.74), (3.78) and (3.80) that

P̄ 2 ∼ −
{

(2 − M2)ω

(1 − M2)
P0 +

1

(1 − M2)1/2

(
λ2

λ
a1A

(1)
m

)}
|k|, (4.7)

P̄ 3 ∼
{

(2 + M2)ω2

2(1 − M2)2
P0 +

(2 − M2)ω

(1 − M2)3/2

(
λ2

λ
a1A

(1)
m

)}
sgn(k), (4.8)

P̄ 4 ∼ −
{

M2(4 + M2)ω3

2(1 − M2)3
P0 +

(2 + M2)ω2

2(1 − M2)5/2

(
λ2

λ
a1A

(1)
m

)}
|k|−1. (4.9)

It can be shown by using Watson’s lemma that

p(1)
s ∼ −4i[x̄3 − 3(1 − M2)x̄ȳ2]

[x̄2 + (1 − M2)ȳ2]3
P0, (4.10)

p(2)
s ∼ −

{
(2 − M2)ω

(1 − M2)
P0 +

1

(1 − M2)1/2

(
λ2

λ
a1A

(1)
m

)}
2[−x̄2 + (1 − M2)ȳ2]

[x̄2 + (1 − M2)ȳ2]2

+ 4M2ωP0

[3x̄2 − (1 − M2)ȳ2]ȳ2

[x̄2 + (1 − M2)ȳ2]3
, (4.11)

p(3)
s ∼

{
(2 + M2)ω2

2(1 − M2)2
P0 +

(2 − M2)ω

(1 − M2)3/2

(
λ2

λ
a1A

(1)
m

)}
2ix̄

x̄2 + (1 − M2)ȳ2

− 2iM4ω2P0

1 − M2

x̄ȳ2[x̄2 − 3(1 − M2)ȳ2]

[x̄2 + (1 − M2)ȳ2]3
+

{
M2(5 − 2M2)ω2P0

2(1 − M2)

+
M2ω

(1 − M2)1/2

(
λ2

λ
a1A

(1)
m

)}
4ix̄ȳ2

[x̄2 + (1 − M2)ȳ2]2
. (4.12)

The relation (4.9) indicates that P̄ 4 should be understood as a generalized function.
The asymptote of p(4)

s is given by (see e.g. Lighthill 1964, p. 43),



Acoustic radiation of Tollmien–Schlichting waves 335

p(4)
s ∼

{
M2(4 + M2)ω3

(1 − M2)3
P0 +

(2 + M2)ω2

(1 − M2)5/2

(
λ2

λ
a1A

(1)
m

)}(
ln[x̄2 + (1 − M2)ȳ2]1/2 +C

)
+

2M6ω3P0

3(1 − M2)

[3x̄2 − (1 − M2)ȳ2]ȳ4

[x̄2 + (1 − M2)ȳ2]3

−
{

M4(3 − M2)ω3

(1 − M2)2
P0 +

M4ω2

(1 − M2)3/2

(
λ2

λ
a1A

(1)
m

)}
[−x̄2 + (1 − M2)ȳ2]ȳ2

[x̄2 + (1 − M2)ȳ2]2

−
{

M2(4 + M2)ω3

(1 − M2)2
P0 +

M2(5 − 2M2)ω2

(1 − M2)3/2

(
λ2

λ
a1A

(1)
m

)}
ȳ2

x̄2 + (1 − M2)ȳ2
, (4.13)

where C is an arbitrary constant; its appearance is merely a reflection of the fact
that the Laplace equation admits a constant solution (cf. Crow 1970). The far-field
asymptotes of p(1)

s , p(2)
s , p(3)

s and p(4)
s indicate that they act, respectively, as octupole,

quadrupole, dipole and monopole sources for the sound radiation.

4.2. The acoustic field

The asymptote of the pressure fluctuation in the upper deck implies that the
expansion (3.30) ceases to be valid when x̄ = O(ε−1) and ȳ = O(ε−1). This suggests
the introduction of the variables

x† = εx̄, y† = εȳ (4.14)

to describe the acoustic field. Instead of Poisson’s equation in the upper deck, the
pressure fluctuation now satisfies the convected wave equation in a uniform stream,

M2

(
− iω +

∂

∂x†

)2

ps −
(

∂2

∂x†2
+

∂2

∂y†2

)
ps = 0, (4.15)

with the boundary condition that ps → 0 as r† ≡ (x†2 + y†2)1/2 → ∞. The equation is
homogeneous since the exponential decay of the T-S wave eigenfunction means that
the local forcing vanishes. A solution can be sought of the form

ps =
δhε4

√
2π

p†(x̂, ŷ) e−iMx̂, (4.16)

where

x̂ =
Mω

1 − M2
x†, ŷ =

Mω

(1 − M2)1/2
y† (4.17)

are re-normalized coordinates. In terms of (x̂, ŷ), the governing equation for p†

reduces to the Helmholtz equation(
∂2

∂x̂2
+

∂2

∂ŷ2

)
p† + p† = 0.

The relevant solution for p† can be expressed as a superposition of multipoles

p† =

{
s11

∂3

∂x̂3
+ s12

∂3

∂x̂2∂ŷ
+ s21

∂3

∂x̂∂ŷ2
+ s22

∂3

∂ŷ3

+ q11

∂2

∂x̂2
+ q12

∂2

∂x̂∂ŷ
+ q22

∂2

∂ŷ2
+ d1

∂

∂x̂
+ d2

∂

∂ŷ
+ m

}
H

(1)
0 (r̂), (4.18)

where H
(1)
0 denotes the Hankel function, and r̂ =(x̂2+ ŷ2)1/2. We may take s12 = s21 = 0

and m =0 without losing generality because these terms can be expressed as a
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combination of the remaining ones in (4.18) by using the identity H
(1)
0 (r̂) = −(∂2/∂x̂2+

∂2/∂ŷ2)H (1)
0 (r̂). The values of the constants s11, s22, q11, q12, q22, d1 and d2 can be

determined by matching with the upper-deck solution. To that end, we note that for
small r̂ ,

H
(1)
0 (r̂) ∼ 2i

π

(
1 − 1

4
r̂2

)
ln r̂ +

(
1 − 1

4
r̂2

)
+

2i

π
+

2i

π
(ln 2 + γE − 1)

(
1 − 1

4
r̂2

)
+ · · · , (4.19)

with γE ≈ 0.5772 being Euler’s constant. Inserting (4.19) into (4.18) yields the
asymptote of p† for r̂ � 1. On the other hand, use of (4.10)–(4.13) in (4.1) gives
the far-field asymptote of ps in the upper deck, which is then rewritten in terms of x̂

and ŷ. Matching the two asymptotic expressions, we find that

s11 = − πM3ω3

(1 − M2)3
, s22 = 0, (4.20)

q11 =
πiM2(3 + M2)ω3P0

(1 − M2)3
+

πi(1 + M2)ω2

(1 − M2)5/2

(
λ2

λ
a1A

(1)
m

)
, (4.21)

q22 =
πiM2ω3P0

(1 − M2)3
+

πiω2

(1 − M2)5/2

(
λ2

λ
a1A

(1)
m

)
, q12 = 0, (4.22)

and

d1 =
πM(1 + 2M2)ω3P0

(1 − M2)3
+

2πMω2

(1 − M2)5/2

(
λ2

λ
a1A

(1)
m

)
, d2 = 0. (4.23)

It is worth mentioning that the matching requirement leads to a massively over-
determined system, in which the number of the terms expected to match far exceeds
that of the free constants. Nevertheless, it has been verified that once (4.20)–(4.23)
are chosen, all the terms match exactly. This, as is usual in the matched asymptotic
expansion, serves as a very useful check of our derivation.

The pressure distribution in the acoustic field is therefore described by (4.16)
together with (4.18) and (4.20)–(4.23). Of interest is the far-field behaviour of the
acoustic pressure. Making use of the fact that H

(1)
0 (r̂) ∼

√
2/πr̂−1/2 exp(i(r̂ − π/4)) for

large r̂ , we find that

ps ∼ − (δhε4)i

(1 − M2)5/2

q(θ; M, ω)

(Mωr†)1/2
exp

{
i

(
Mω(1 − M2 sin2 θ)1/2

1 − M2
r† − M2ω

1 − M2
x† − π

4

)}
(4.24)

for r̂ � 1, where q is given by

q(θ; M, ω) =
1

(1 − M2 sin2 θ)1/4

[
1 − M cos θ

(1 − M2 sin2 θ)1/2

]2

×
{

ω3P0

[
1 − cos θ/M

(1 − M2 sin2 θ)1/2

]
M2 + ω2(1 − M2)1/2

(
λ2

λ
a1A

(1)
m

)}
,

(4.25)

with θ ≡ tan−1(y†/x†) being the observation angle (see figure 1). It should be pointed
out that the above solution is not expected to be valid for θ ≈ π, 0 because in these two
wedged regions at shallow angles to the up/downstream directions, the interchange
between the hydrodynamic and acoustic motions is more complicated.

Finally, it may be noted that the scalings (4.14) and (4.17) imply that the motion
acquires the acoustic nature at distances y ∼ O(M−1R−1/4). For M = 0.2 and R =106,
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that amounts to about 160 boundary-layer thickness. Such an estimate provides a
guide to the required domain size for direct numerical simulations of sound generation.

5. Variation of the T-S wave amplitude due to scattering
In this section, we calculate the T-S wave downstream of the roughness element.

For definitiveness, consider the pressure in the lower deck. In the physical space, the
pressure of the scattered field is given by

ps =
εhδ

(2π)1/2

∫ ∞

−∞

(
P1(k) + εP̃ 2(k) + · · ·

)
eikx̄ dk. (5.1)

It follows from (3.61) and (3.56) that P1(k) can be split as a sum of two terms, one in
which k = α1 is a simple pole, and one in which k = α1 is a branch point, that is

P1 = − i(ikλ)2/3Ai′(ζ0)

k�(k)

{
ũ1,Y (0)(1 + ζ0R(ζ0)) − α

k

∫ ∞

ζ0

K(ζ, ζ0)ũ1,Y dζ

}
F̂ (k − α)

+ {the term in which k =α1 is a branch point}. (5.2)

The branch point contributes only to the near field in the vicinity of the roughness
element, while the pole gives rise to the T-S wave, which becomes dominant for
x̄ � 1. Somewhat similar to a local receptivity problem (see e.g. Wu 2001), this T-S
component appears to have grown from an effective initial amplitude, p̃s,0 say, at
x̄ = 0, and p̃s,0 can be easily evaluated by using the residue theorem. On taking into
account the incident T-S wave, the total (equivalent) amplitude of the T-S wave at
x̄ = 0 is (pI + p̃s,0), that is, the effect of a local roughness element is to ‘boost’ instantly
the amplitude of the T-S wave amplitude to (pI + p̃s,0). This effect of roughness on the
T-S wave can be measured by a transmission coefficient, defined as Tr =(pI +p̃s,0)/pI .
The T-S wave is enhanced by the roughness if |Tr | > 1, and weakened if |Tr | < 1.
For simplicity, we consider the Blasius boundary layer only. Then on substituting the
result for p̃s,0, it is found that Tr , to leading order, is given by

Tr = 1 +
(2π)1/2i

�′(α)

{
ũ1,Y (0)

(
1 + η0R(η0)

)
−

∫ ∞

η0

K(η, η0)ũ1,Y dη

}
hF̂ (0).

Substituting in (2.54) and (3.63) and performing integration by parts in the above
expression, we find that the integral term is (1 + η0R)ũ1,Y (0) so that Tr = 1. When
the second-order solution (3.74) is used in (5.1), we find that

Tr = 1 +

{
(2π)1/2α2

α1�′(α)
(iα1λ)

1/3

∫ ∞

η0

K(η, η0)
(
2η0 − 4

3
η
)
Ai′(η) dη

}
εhF̂ (0). (5.3)

The above result indicates that roughness shape is irrelevant, and that the gain or

reduction in the T-S wave amplitude is proportional to S ≡ hF̂ (0), the (rescaled) area
enclosed by the roughness contour.

6. Quantitative results
The physical quantities of interest are the intensity and directivity of the radiated

sound (4.25), and also the transmission coefficient (5.3). To evaluate them, it is
necessary to compute numerically the base-flow profile and the Airy functions. That
is done by a shooting method based on a fourth-order Runge–Kutta method. The
various integrals are evaluated using the Trapezoidal rule or Simpson’s rule wherever
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Figure 2. The directivity of the acoustic field for the Blasius boundary layer as shown by
plotting q0(θ ; M) (see (6.1)) in the polar coordinate.

possible. For a given frequency ω, the dispersion relation (2.57) is solved by means
of Newton iteration to determine the corresponding wavenumber α1, and the second-
order correction, α2, is calculated using (2.63). In order for the results to be more
accessible to a general reader, the familiar non-dimensional frequency, F = ω∗ν∞/U 2

∞×
106, will be used in presentation, where ω∗ is the dimensional frequency. F is related
to ω via

F = ω(Tw/T∞)−3/2R−3/4 × 106.

In all the calculations, we take R = 106.

6.1. Acoustic radiation

In the case of the Blasius boundary layer (βH = λ2 = 0), the emitted sound has the
same directivity for all frequencies, given by

q0(θ; M) =
(1 − M2)1/4

(1 − M2 sin2 θ)1/4

[
1 − cos θ/M

(1 − M2 sin2 θ)1/2

][
1 − M cos θ

(1 − M2 sin2 θ)1/2

]2

. (6.1)

The directivity is illustrated in figure 2 in the form of the usual polar-coordinate
plot for three representative Mach numbers. The radiation is characterized by
predominantly upstream-propagating acoustic waves. For very low Mach numbers,
substantial downstream-propagating sound waves are also generated. However, the
downstream radiation diminishes as M increases. The acoustic field exhibits an angle
of silence, which is close to the 90o direction for a broad range of O(1) Mach numbers.

While the directivity is independent of the frequency, the intensity of the emitted
sound is a strong function of the frequency F . The absolute intensity depends, of
course, on the amplitude of the incident T-S wave, as well as on the height and shape
of the roughness element. It is useful to normalize the acoustic pressure ps by writing

|ps | = ε4hδF̂ a1M
3/2(1 − M2)−3σ0

q0(θ)√
r†

. (6.2)

Then σ0 is a function of F only, and characterizes the radiating property of T-S waves
of different frequencies. The variation of σ0 with the frequency F is plotted in figure 3
for three representative Mach numbers. In each case, σ0 increases monotonically with
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Figure 3. Variation of σ0, defined by (6.2), with the non-dimensional frequency F .
�, The low-branch of the neutral mode; �, the most unstable mode.

F . This, however, should not be interpreted as implying that a given roughness is most
efficient in emitting high-frequency sound waves. The efficiency of a given roughness
in radiating sound of different frequencies can be characterized by

σr ≡ σ0F̂ (−α), (6.3)

which may be referred to as a radiation efficiency coefficient. As an example, σr is
calculated for a hump with a Gaussian shape

Fw(x̄) = exp(−x̄2/d̄ 2),

where d ≡ (Tw/T∞)3/2d̄ measures the steepness of the roughness. Figure 4(a) shows
σr as a function of F for M = 0.5 and three values of d . For each d , a salient feature
is the appearance of a peak, suggesting that roughness acts as a filter, filtering out
components of both very low and high frequencies. The sound emitted by a steep
roughness (corresponding to small d) tends to have a broader bandwidth than that by
a mild roughness (large d). Figure 4(b) indicates that as the Mach number increases,
the peak shifts to high frequencies, and becomes much broader.

The pressure gradient affects radiation in two ways: it modifies the base-flow profile
and hence the wall shear λ, and it introduces a quadrupole source corresponding to
the second term in (4.25). Its impact is illustrated in the following for the case of
M = 0.2 and d = 4.

When a pressure gradient is present, the directivity of the emitted sound depends
on the frequency of the source, and it is no longer possible to write |ps | as (6.2).
Instead, it is written as

|ps | = ε4hδa1M
3/2(1 − M2)−3 qs(θ; F )√

r†
. (6.4)

For a favourable pressure gradient, βH = 0.2, the directivity is shown in figure 5(a),
where qs(θ; F ) is plotted against θ for three representative values of F . The radiated
sound waves primarily propagate upstream. For comparison purposes, the correspond-
ing result for βH = 0 is displayed in the dotted lines. Clearly, the pressure gradient
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Figure 4. Variation of the radiation efficiency function σr with F : (a) effect of d (M =0.5);
(b) effect of M (d = 4). �, The neutral and �, the most unstable modes.

has a significant effect at the low-frequency end. Figure 5(b) shows qs(θ; F ) against
the frequency F . A favourable pressure gradient appreciably enhances the efficiency
of low-frequency radiation, but moderately reduces that of high-frequency radiation.
Although only shown for three directions, the result is typical of all directions.
Remember that the present result does not necessarily imply that an accelerating
boundary layer is noisier because the absolute sound level depends on the amplitude
or spectrum of the instability waves, which in turn depends inter alia on receptivity
and instability characteristics. Since a favourable pressure stabilizes the boundary
layer, T-S waves are likely to be weaker, so that the actual noise level is more likely
to be lower.

Figure 6(a) shows the directivity for the case of an adverse pressure gradient
corresponding to βH = −0.08. Upstream propagating sound waves are predominant,
but appreciable downstream emission also occurs. An adverse pressure gradient has
a significant impact across the whole frequency range. This is further illustrated in
figure 6(b). As opposed to the favourable pressure case, an adverse pressure gradient
enhances the efficiency of the high-frequency radiation, while slightly reducing that
of the low-frequency radiation.
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Figure 5. (a) Directivity of the acoustic field: qs(θ ; F ) in a polar plot for F = 36, 55 and 72.
(b) Radiation efficiency: qs(θ ; F ) vs. F along three directions: θ =45◦ (�), 90◦ (�), and 135◦

(�). Filled symbols: favourable pressure gradient βH = 0.2. Open symbols: βH = 0.

6.2. Transmission coefficient: effect of roughness on the T-S wave

The transmission coefficient (5.3) is evaluated. A typical result is shown in figure 7.
It is found that |Tr | > 1 for h < 0, implying that a concave roughness element (i.e.
a surface dent) always enhances the T-S wave. For sufficiently small but positive h,
|Tr | < 1, suggesting that a surface hump acts as wave barrier to ‘block’ the T-S wave.
Except for the low-frequency band, T-S waves are quite sensitive to roughness. The
values of h and d used in figure 7 correspond to a roughness element of just 100 µm
in height and 25 mm in width, in a typical laboratory wind-tunnel experiment, with
a free-stream speed U∞ = 20 m s−1. Despite such a mild roughness, (for which the
linearized approximation is well justified), the T-S wave amplitude is typically altered
by 10 % − 30 %. An effect of this magnitude would be measurable, and it would be
interesting to check this prediction experimentally.
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Figure 6. (a) Directivity of the acoustic field: qs(θ ; F ) in a polar plot for F = 20, 40 and 70.
(b) Radiation efficiency: qs(θ ; F ) vs. F along three directions: θ = 45◦ (�), 90◦ (�), and 135◦

(�). Filled symbols: adverse pressure gradient βH = − 0.08. Open symbols: βH = 0.

That a surface hump may ‘stabilize’ T-S waves comes as a surprise. However,
it should be pointed out that this stabilizing role is restricted to small values of

S = hF̂ (0). When S is not small, it is possible that |Tr | > 1. Strictly speaking, a
nonlinear calculation is then necessary. Nevertheless, a crude estimate for the critical
value of S may be made according to |Tr | =1. The outcome is displayed in figure 8.
The threshold is moderate for the T-S waves with frequencies above that of
the locally most unstable mode. If the data is translated to a typical low-speed
experiment (U∞ = 20 m s−1), the threshold for stabilization in the relevant frequency
band 40 � F � 90 is found to be in the range of 100−200 µm, beyond which, roughness
is expected to have a destabilizing effect, whether it is concave or convex.

It is well known that surface roughness tends to precipitate transition. This has
usually been attributed to two distinct mechanisms. The first is receptivity, that is, the
roughness-induced mean flow interacts with some free-stream disturbances to generate
instability waves. The second is that the roughness distorts the base flow, thereby
changing the instability characteristics; this usually happens with extended/distributed
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Figure 8. The estimated threshold value of S below which a surface hump has a stabilizing
effect. �, Most unstable modes.

surface roughness, or large isolated roughness height which may produce a region
of separated flow. The present scattering by a localized roughness element represents
yet another mechanism, which is different in that roughness affects the propagation
of pre-existing T-S waves.

7. Summary and concluding remarks
In this paper, an asymptotic approach based on triple-deck theory was extended to

analyse the acoustic radiation of a T-S wave as it is scattered by a local roughness. It
is found that the acoustic field consists of predominately upstream propagating sound
waves. The mean pressure gradient affects the radiation significantly and in a subtle
way (i.e. by generating a quadrupole source in the main part of boundary layer).
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From the methodology point of view, the present asymptotic approach, which
treats the source as an integral part of sound generation, has a certain advantage
over the acoustic analogy approach. The hydrodynamic motion is analysed in detail.
The radiating property of various source terms is decided by examining, in the
Fourier space, the small-wavenumber limit of the solutions forced by them. This
allows for a systematic and unambiguous identification of relevant sources. A correct
prediction of the radiated sound requires knowledge of both the strength of the
hydrodynamic sources and their radiating property, characterized by the asymptotic
and multipole orderings, respectively. Weaker lower-order multipolar sources can be
just as important as stronger higher-order sources.

A fundamental feature of aerodynamic sound generation is cancellation among
sources, which leads to a tiny fraction of energy being radiated to the far field as
acoustic waves. This accordingly is also a cause of difficulty for accurate prediction.
The cancellation in the present problem was revealed in some detail. The first type
of cancellation occurs in the spectral space in the small-k limit, as a result of which
the largest forcing term (from the lower deck) acts as an octupole, rather than a
quadrupole as one might expect. A similar cancellation leading to reduced radiation
takes place in the upper deck. The second type of cancellation is in physical space,
e.g. between the dipole sources from the main and upper decks.

In the present approach, viscosity appears at leading-order in the lower deck,
and moreover directly controls the strength of the octupole source, thereby affecting
the overall intensity (and also the directivity if βH �= 0) of the emitted sound.
In contrast, the wave operator in any acoustic analogy theory ignores viscosity
completely. An interesting question is: how could the latter be used to solve the
present problem? Given that the sound wave is generated by the mutual interaction
between the T-S wave and the mean-flow distortion, one might propose to calculate the
sound emission using (3.26), the ‘source term’ in which may be evaluated beforehand
using, for example, the O-S solutions for both the mean-flow distortion and the
T-S wave. However, this seemingly reasonable procedure would not yield the correct
answer because it neglects viscosity, which has been shown to be controlling sound
emission. It appears, therefore, that the viscous-scattering problem will have to be
solved beforehand, and the resulting solution will be used to model the relevant source.

Acoustic radiation of instability waves undergoing rapid distortion is suggested as
an important physical mechanism for generating noise in subsonic flows. The problem
considered in this paper represents a relatively simple situation. As mentioned in § 1,
rapid distortion occurs when instability waves interact with a sharp corner or a
trailing edge. The basic asymptotic framework is currently being extended to
investigate those sound-generation problems, which are closely related to air-frame
noise.

The present study also indicates that a minimal local surface roughness has a
significant effect on the amplitude of the T-S wave, and hence on the transition as a
whole.
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Appendix. Definitions of integrals and forcing terms

I2 =

∫ ∞

0

(
RBU 2

B − 1
)
dy, (A 1)

IM = γM2 −
∫ ∞

0

[
(γ − 1)M2

(
R′

B

RB

− U ′
B

UB

)
+

R′
B

R2
BU 2

B

]
dỹ, (A 2)

J0 = aM2 −
∫ a

0

(
1

RBU 2
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T∞

1

λ2y2
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dy +

Tw
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1

λ2a
, (A 3)

J∞ =

∫ ∞

a

(
1

RBU 2
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dy − (1 − M2)a, (A 4)
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∫ ∞
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U 2
B

)
+

2R′
B

R2
BU 3

B

}
dỹ + 1

2
(λ2/λ)(γ − 1)M2Ω−1. (A 5)

In the above expressions, the parameter a is arbitrarily provided, a �= 0.
The forcing terms in (3.13) are:

S3 = −ik
(
u1R

(2)
m + ρ1U

(2)
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(1)
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(1)
m
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(A 6)
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+ Ω
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E3 = iωRB
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The forcing terms in (3.45) are:

R4,p =

{
−(1 − M2)3/2(α1 + µ)[(1 − M2)α2 + M2ω]
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k − α

)
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(
1 − µ

k − α

)
(k − 2α)

+ (1 − M2)(α1 + µ)

[
−(q − (k − 2α)ω/α1)

(
1 − µ

k − α

)
+ α2

]
− (1 − M2)

(
1 − µ

k − α

)
αα2 − M2q

[
γM2 + 1

(1 − M2)1/2
− (1 − M2)1/2µ

k − α

]
ȳk2

+ M2

[
−2γ q + (k − 2α)(ω/α1)

(
1 − µ

k − α

)
− 2qµ

k − α

]
k

}
p1P

(1)
m , (A 10)
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R4,v =

{
(1 − M2)[(1 − M2)α2 + M2ω]

(
1 − µ

k − α

)
(k − 2α)ȳ

+ (1 − M2)1/2

[
(q − (k − 2α)ω/α1)

(
1 − µ

k − α

)
− α2

]}
p1P

(1)
m . (A 11)
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